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Abstract. Coherent states (CS) quantum entropy can be split into two components.
The dynamical entropy is linked with the dynamical properties of a quantum system.
The measurement entropy, which tends to zero in the semiclassical limit, describes the
unpredictability induced by the process of a quantum approximate measurement. We study
the CS-measurement entropy for spin coherent states defined on the sphere discussing different
methods dealing with the limit: time tends to infinity. In particular, we propose an effective
technique of computing the entropy by iterated function systems. The dependence of CS-
measurement entropy on the character of the partition of the phase space is analysed.

1. Introduction

During the last decade a lot of attention has been paid to the analysis of quantum analogues
of chaotic classical maps defined on a compact phase space. In particular, quantum versions
of the Baker map [1–3], the Arnold cat map [4, 3] (torus) and the periodically kicked top
[5–7] (sphere) become standard models often used in the study onquantum chaology[8–10].
The classical versions of these models can be calledchaotic (for the kicked top under an
appropriate choice of parameters), since the Kolmogorov–Sinai (KS) dynamical entropy of
the systems is positive. The definition of KS-entropy cannot be adopted straightforwardly
into quantum mechanics, as it is based on the concept of classical trajectory. Several
methods of generalizing KS-entropy to quantum mechanics were proposed (see [11–15] for
the complete bibliography), but most of them lead to zero entropy for all quantum systems
represented on a finite-dimensional Hilbert space. This property is common to the definitions
of quantum entropy due to Connes, Narnhoffer and Thirring [16], Gaspard [17], Alicki and
Fannes [18], and Roepstorff [19]. Therefore these concepts of quantum entropy are not
suitable to describe dynamical properties of the above-mentioned quantum maps which, due
to the compactness of the classical phase space, act on a finite-dimensional Hilbert space.

Coherent states (CS) dynamical entropy, introduced in [13], appears to be more adequate
for a quantitative characterization of chaos in such quantum systems. This definition of
quantum entropy takes into account the process ofsequential approximate measurement.
The notion of approximate, or unsharp, or fuzzy quantum measurement has been analysed
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in the last 25 yr by Ali, Emchs and Prugovečki, Busch and Lahti, Davies and Lewis,
Ozawa, Schroeck and many others in the framework of the operational approach to quantum
mechanics, or stochastic (phase space) quantum mechanics (see monographs [20–23] for
details and further references). In order to get some information about the localization
of a state in a phase space one may perform double (or multiple, in a phase space of
higher dimension) quantum measurement of canonically conjugated observables. Due to
the uncertainty principle such a measurement cannot be sharp and has to be approximate.
The definition of CS-entropy is therefore based on the modified postulate of wavefunction
collapse. The original postulate of Lüders and von Neumann, corresponding to a single
exact measurement, assumes that after a measurement the state undergoes a transition
to an eigenstate of the observable [24]. The modified postulate, used in the description
of an approximate multiple measurement, asserts that after the measurement the state is
transformed into an appropriate mixture of coherent states, i.e. the coherent states area
posteriori states in the sense of Ozawa [25].

The CS-entropy with respect to a given partition can be divided into two parts: the
dynamical entropywhich describes the dynamical properties of a quantum system and the
measurement entropyrelated to the unpredictability induced by the process of sequential
quantum measurement. The proof of the fact that in the semiclassical limit the CS-
measurement entropy tends to zero was sketched in [13]. In the same paper it was
conjectured thatthe CS-dynamical entropy tends to the KS-entropy of the corresponding
classical systemif the unitary dynamics comes from an appropriate quantization procedure,
and some results in this direction were obtained.

In this work we analyse in detail CS-measurement entropy for theSU(2) coherent
states, where the phase space is the two–dimensional sphere. Such an example is of special
physical interest, since it corresponds to an unsharp measurement of the spin components
[26–29]. In [13] we proposed a general plan for studying the notion of CS-entropy. The
results obtained here constitute the first step towards the realization of this scheme.

This paper is organized as follows. In section 2 we recall the definitions of CS-
entropy, CS-measurement entropy and CS-dynamical entropy, and review some of their
basic properties. In section 3 we summarize the standard facts on theSU(2) vector
coherent states. Various methods of computing CS-measurement entropy for the partition
of the sphere into two hemispheres are presented, and the semiclassical limit is discussed
in section 4. The case of an arbitrary partition of the sphere is analysed in section 5. In
section 6 we treat yet another method of calculating CS-entropy based on the notion of
iterated function systems. The Rényi-type generalizations of CS-entropy are introduced in
section 7. Finally, section 8 contains some concluding remarks.

2. Coherent states quantum entropy

2.1. Kolmogorov–Sinai entropy

Coherent states entropy can be regarded [13] as a generalization of the classical
Kolmogorov–Sinai entropy. Let us recall here the definition of the KS-entropy for a classical
measurable mapS : �→ � generating a discrete dynamical system. Let� be a compact
phase space endowed with a probability measureµ, invariant with respect toS, and divided
into k disjoint measurable cellsE1, . . . , Ek. The time evolution of classical trajectories
during n periods is described via probabilities

P cli0,...,in−1
= µ({x ∈ � : x ∈ Ei0, S(x) ∈ Ei1, . . . , Sn−1(x) ∈ Ein−1}) (2.1)
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of entering a given sequence of cells, whereil = 1, . . . , k; l = 0, . . . , n− 1. It is assumed
that the initial points, determining uniquely each trajectory, are distributed uniformly in the
phase space with respect to the measureµ.

The partial entropy ofS is

Hn = −
k∑

i0,...,in−1=1

P cli0,...,in−1
lnP cli0,...,in−1

(2.2)

the KS-entropy with respect to the partitionC = {E1, . . . , Ek} is given by

HKS(S, C) := lim
n→∞

1

n
Hn (2.3)

and finally theKS-entropyof S is defined as [30]

HKS(S) := sup
C
HKS(S, C). (2.4)

In the above formula the supremum is taken over all possible finite partitions of the phase
space. A partition for which the supremum is achieved is calledgenerating. Knowledge of a
k-element generating partition for a given map allows one to represent the time evolution of
the system in ak-letters symbolic dynamics and to find the upper bound for the KS-entropy:
HKS(S) 6 ln k. For some classical systems, like the Baker map, it is straightforward to find a
generating partition and to compute the KS-entropy. On the other hand, it is usually difficult
to find a generating partition for an arbitrary classical map. Recent years brought some
progress in this field: Christiansen and Politi found a good approximation for a generating
partition for the standard map [31] and obtained a fair estimate for the KS-entropy (see also
[32]).

The convergence to the limit in (2.3) is usually slow, not faster than 1/n. It is therefore
advantageous to consider the relative entropiesGn defined as

Gn := Hn −Hn−1 for n > 1 G1 = H1. (2.5)

It is easy to show that the sequenceGn also tends toHKS [33]. This limit is usually
achieved much faster than the limit in (2.3). For example Misiurewicz and Ziemian [34]
and Ziemian [35] proved that for a certain class of maps from the unit interval onto itself
this convergence is exponential (see also [36]). It seems that such a behaviour is typical for
chaotic maps. We refer the reader to [37–40] for the review of recent results in this area.
Note that the convergence of1

n
Hn = 1

n

∑n
i=1Gi is slower, since the terms of largeri have

to balance a poor precision of the approximation due to the initial terms [41].

2.2. Approximate measurement and coherent states

The probabilitiesP cl entering the definition of classical KS-entropy (2.2) are meaningful
under the assumption that during the time evolution of the system one can trace an individual
trajectory and determine its localization in the phase space with infinite precision. This
supposition, consistent with the principles of classical mechanics, is definitely not fulfilled
in quantum mechanics.

Information concerning the time evolution of a quantum system may be obtained by
the process of sequential measurement. The fundamental analysis of a single quantum
measurement of a discrete observableÂ, expanded in an orthonormal basis asÂ :=∑N

m=1 am|m〉〈m|, leads to thecollapse postulateof Lüders and von Neumann. The canonical
measurement of̂A yields with the probabilitypa =

∑
am=a〈m|ρ̂|m〉 the state reduction [24]

ρ̂
measurement−→ ρ̂ ′ :=

∑
am=a |m〉〈m|ρ̂|m〉〈m|∑

am=a〈m|ρ̂|m〉
(2.6)
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provided the outcome isa, whereρ̂ is a density matrix describing the state of the system
before the measurement. If|m〉 is the only eigenstate of̂A corresponding to the eigenvalue
am, then this formula simplifies and the act of measurement transformsρ̂ into a pure state
ρ̂ ′ = |m〉〈m|.

The measurement of a single observable does not provide sufficient information about the
localization of the quantum state in the phase space. Such information can be acquired only
in a simultaneous double (or multiple) approximate measurement of canonically conjugated
observables. Let us consider anN -dimensional complex Hilbert spaceH which represents
the kinematicsof the system and a compact set� equipped with a probability measure
µ (we shall write dx for dµ(x)) which forms aphase space, or in other words, a space
of experimental outcomes. A correspondence between both spaces can be established by
introducing afamily of coherent states, i.e. a continuous map� 3 x −→ |x〉 ∈ H satisfying
the resolution of the identity

∫
�
|x〉〈x| dx = I [42]. In this work we use the coherent states

normalized as〈x|x〉 = N .
Following the ideas of Davies and Lewis [43] and Davies [20] we assume, in a full

analogy to (2.6), that a multiple approximate quantum measurement yields the state reduction

ρ̂
measurement−→ ρ̂ ′ :=

1
N

∫
Ei
|x〉〈x|ρ̂|x〉〈x| dx∫
Ei
〈x|ρ̂|x〉 dx (2.7)

provided the outcome is in the cellEi , which occurs with the probabilityPCS
i =∫

Ei
〈x|ρ̂|x〉 dx. Note that if one increases the precision of the measurement of a single

variable (and simultaneously decreases the precision of the measurement of the canonically
coupled variables) this postulate reduces in the limit to the standard collapse postulate of
Lüders and von Neumann. Formally, one has to replace the coherent states|x〉 used in (2.7)
by so-calledsqueezed states.

2.3. CS-probabilities and CS-entropy

Our approach to quantum entropy is based on the assumption that the knowledge about the
time evolution of a quantum state is obtained from a sequence of multiple approximate
quantum measurements. The evolution of the system between every two subsequent
measurements is governed by a unitary matrixU .

A scheme of the first three periods of the time evolution of a system is presented
in figure 1. Consider a quantum path encoded by the following sequence of cells:
{Ei0, Ei1, . . . , Ein−1}. Let the initial state be proportional to the identity operator, i.e.ρ̂0 =

Figure 1. Scheme of the first three periods of the time evolution of the dynamical system. The
unitary quantum mapU describes the evolution of the system during each period, after which
an act of approximate measurement takes place.
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1/N · I . The coherent states collapse postulate (2.7) allows us to calculate the probability
that a given sequence ofn symbols occurs ([13], see also [44]). Namely, we have

PCS
i0,...,in−1

=
∫
Ei0

dx0 · · ·
∫
Ein−1

dxn−1

n−1∏
u=1

K(xu−1, xu) (2.8)

whereil = 1, . . . , k; l = 0, . . . , n− 1 and the kernelK is given by

K(x, y) = 1

N
|〈y|U |x〉|2. (2.9)

We call themCS-probabilities. Partition-dependent,coherent states (CS) entropyHCS of a
quantum mapU is defined like its classical counterpart (2.3)

HCS(U, C) := lim
n→∞

1

n
Hn(U, C) (2.10)

where

Hn(U, C) := −
k∑

i0,...,in−1=1

PCS
i0,...,in−1

lnPCS
i0,...,in−1

(2.11)

andC = {E1, . . . , Ek}. In the semiclassical limit the CS-entropy seems to tend to the KS-
entropy, if the quantization procedure isregular [13], i.e. if some assumptions linking the
family of quantum maps with the corresponding classical map are fulfilled.

Quantum CS-probabilities can be also used to define other quantities which measure
the randomness of the system (for a recent account of such concepts see [45, 46]) like
Rényi-type entropy of orderβ which we shall analyse in section 7. For some purposes, for
instance, it might be useful to defineCS-inverse participation ratioν

ν(U, C) :=
k∑

i0,...,in−1=1

(PCS
i0,...,in−1

)2. (2.12)

It is an analogue of a quantity often used in solid state physics to describe localization of a
wavefunction [47], since its inverse gives the average number of occupied cells. It is linked
to CS-Ŕenyi entropy of order 2.

In the simplest case of the trivial dynamics the quantum mapU reduces to the identity
operatorI . Even in this case the quantum entropyHCS does not vanish, since the coherent
states are not orthogonal and do overlap [42]. TheCS-measurement entropyis given by
[13, 48]

Hmeas(C) := HCS(U ≡ I, C) (2.13)

and depends on a family of coherent states in the phase space� and on a finite partitionC.
The CS-dynamical entropy of a quantum map U with respect to a partitionC is defined

as [13, 48]

Hdyn(U, C) := HCS(U, C)−Hmeas(C) (2.14)

and partition-independentCS-dynamical entropyas [49]

Hdyn(U) := sup
C
Hdyn(U, C). (2.15)

In the present paper we study CS-measurement entropy and its dependence on a partition
and the semiclassical parameter. This is a preliminary step to calculating CS-dynamical
entropy, which is defined as the difference of two quantities. Moreover, the techniques we
use in computing of CS-measurement entropy can also be applied in the general case.
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2.4. Properties of CS-measurement entropy

We now review some basic properties of CS-measurement entropy. Let us assume that a
finite partitionC of the phase space� is given. LetHn(C) be defined by (2.8)–(2.11) with
U = I , and letG1(C) = H1(C); Gn(C) = Hn(C) − Hn−1(C), for n > 1. Then, applying
the general theory of entropy for random transformations [50, 51], we obtain the following
facts:

(1) the sequences1
n
Hn(C) andGn(C) decrease withn to Hmeas(C);

(2) if a partitionC ′ is finer than a partitionC, thenHmeas(C ′) > Hmeas(C).
Next, let us observe that the kernelK which appears in (2.8) is bistochastic, i.e.∫

�
K(x, ȳ) dx = ∫

�
K(x̄, y)dy = 1 for all x̄, ȳ ∈ �. Let us denote byK0 the maximum of

K. Then
(3) the CS-measurement entropy fulfills the following inequalities:

1

n
Hn(C)− 1

n
lnK0 6 Hmeas(C) 6

1

n
Hn(C) (2.16)

and, in consequence,

H1(C)− lnK0 6 Hmeas(C) 6 H1(C) (2.17)

(for the proof see appendix A).
Note thatH1(C) does not depend on the family of coherent states but only on the

measureµ and it is just the entropy of the partitionC with respect to the measureµ. If
� is a Riemannian manifold andµ is the Riemannian measure on�, then one can deduce
from (2) and (3) thatHmeas(C) can be arbitrarily large for a sufficiently fine partitionC.

It follows from (1) and (3) that
(4) if H1(C) 6= Hmeas(C), then the sequence1

n
Hn(C) converges to the entropyHmeas(C)

precisely asn−1.
(For the proof see appendix B.)
Another important property of CS-measurement entropy,
(5) Hmeas(C) tends to 0 in the semiclassical limit,

was proved in [13] forSU(2) (spin) coherent states. The decay seems to be rather slow.
We shall try to evaluate its rate in the following.

2.5. Matrix form of CS-probabilities

Let C = {E1, . . . , Ek}. We assume that the kernelK entering formula (2.8) has the form

K(x, y) =
M∑

l,r=0

alrgr(x)fl(y) for x, y ∈ X (2.18)

wherealr ∈ R, fl, gr : � → R are continuous, forl, r = 0, . . . ,M, andf0 = g0 ≡ 1 (in
fact we can always presentK in such a form if the family of coherent states comes from the
canonical group-theoretic construction (see [52–54]) with a finite-dimensional Hilbert space
H; thenM is an increasing function of the dimension of the Hilbert space). Let us define
matricesA = [alr ]Ml,r=0 andB(i)rl =

∫
Ei
gr(x)fl(x) dx for l, r = 0, . . . ,M, i = 1, . . . , k.

Then the CS-probabilities are given by the first element of the following matrix product:

PCS
i0,...,in−1

= (B(in−1)AB(in−2)A . . . AB(i0))00. (2.19)

(The proof will appear in [55].) Now one can show that the family of the CS-probabilities
generates on the code spaceSN, whereS = {1, . . . , k}, a shift-invariant measure, which is
algebraic in the sense of Fanneset al (see [56]). Clearly, the decomposition of the kernel
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K is not unique. Moreover, the assumptionf0 = g0 ≡ 1 is too restrictive. In fact, to apply
the matrix method, it is enough to know that the constant function 1 is a linear combination
of the functionsf0, . . . , fM [55].

The above formula makes the calculation of the CS-entropy much easier. Moreover,
it is a starting point for the further investigation of entropy utilizing the theory of iterated
function systems. We present in section 6 some results in this direction. For a fuller
treatment we refer the reader to [55].

3. Spin coherent states

The two-dimensional sphereS2 can be considered as the phase space of the periodically
kicked top. This classical dynamical system is known to exhibit chaos under a suitable
choice of system parameters [5]. In order to study a quantum analogue of this system
it is convenient to consider the operator of angular momentumJ . Its three components
{Jx, Jy, Jz} are related to the infinitesimal rotations along three orthogonal axes{x, y, z} in
R3 and fulfil the standard commutation relations [Jl, Jm] = iεlmnJn, wherel, m, n = x, y, z
and εlmn represents the antisymmetric tensor (from now on we put ¯h = 1). The operators
J± = Jx ± iJy and Jz are generators of the compact Lie groupSU(2). The eigenvalues
j (j + 1), j = 0, 1

2, 1, 3
2, . . ., of the Casimir operatorJ 2 = J 2

x + J 2
y + J 2

z determine the
dimensionN = 2j + 1 of the Hilbert spacesHN carrying the representation of the group.
Common eigenstates|j,m〉,m = −j, . . . , j , of the operatorsJ 2 andJz form an orthonormal
basis inHN .

The SU(2) (spin) coherent states were introduced by Radcliffe [57] and Arecchiet
al [58]. For a thorough discussion we refer the reader to [42, 52–54, 59, 60]. The
idea is the following. Each point on the sphere labelled by the spherical coordinates
(ϑ, ϕ) corresponds to theSU(2) coherent state|j, ϑ, ϕ〉 generated by the unitary operator
R(ϑ, ϕ) = exp[iϑ(sinϕJx − cosϕJy)] acting on the reference state|j, j〉. The natural
projectionSU(2) → SO(3) relates with the operatorR(ϑ, ϕ) the rotation by the angleϑ
around the axis directed along the vector(sinϕ,− cosϕ, 0) normal to thez-axis and to the
vector (sinϑ cosϕ, sinϑ sinϕ, cosϑ) (see figure 2). The state|j, j〉, pointing towards the
‘north pole’ of the sphere, enjoys the minimal uncertainty, i.e. the expression

∑
l=x,y,z 1J

2
l

takes in this state the minimal valuej (the other possible choice of the reference state is
|j,−j〉). More precisely, we put

|j, ϑ, ϕ〉 =
√

2j + 1R(ϑ, ϕ)|j, j〉. (3.1)

Using the stereographical projectionγ = tan(ϑ/2) exp(iϕ) one can find a complex
representation of the coherent state|j, γ 〉 := |j, ϑ, ϕ〉

|j, γ 〉 =
√

2j + 1

(1+ |γ |2)j exp[γ J−]|j, j〉. (3.2)

The prefactor
√

2j + 1 introduced into the above formulae ensures the coherent states
identity resolution in the form∫

S2
|j, ϑ, ϕ〉〈j, ϑ, ϕ| dµ(ϑ, ϕ) = I (3.3)

where the Riemannian measureµ on S2 is given by dµ = sinϑ dϑ dϕ/4π and therefore
does not depend on the quantum numberj . The norm of the coherent states changes
with j as |〈j, ϑ, ϕ|j, ϑ, ϕ〉| = 2j + 1, which enables the respectiveHusimi-like distribution
S2 3 (ϑ ′, ϕ′) −→ |〈j, ϑ, ϕ|j, ϑ ′, ϕ′〉|2 ∈ R of the coherent state|j, ϑ, ϕ〉 to tend to the
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Figure 2. Spherical representation of the spin coherent state|ϑ, ϕ〉 generated by the unitary
rotation operatorR(ϑ, ϕ).

Dirac δ-function asj → ∞. Thus, after such a renormalization we can treat the limit
j → ∞ as thesemiclassical limit[54] or, in other words, as thesharp-point limit in the
sense of Schroeck [61]. For an interpretation of this limit in the language of nonstandard
analysis see [62]. If we had transformed spin coherent states in a different way defining
||j,√2jγ 〉 := (1+|γ |2)−j exp[γ J−]|j, j〉, we would have obtained the canonical (harmonic
oscillator) coherent states in the limitj →∞. This kind of limit, however, is completely
different from the semiclassical limit we use in the present paper.

To simplify the notation in the following sections we shall omit the numberj labelling
coherent states|ϑ, ϕ〉 or |γ 〉. Note thatS2 is isomorphic to the coset spaceSU(2)/U(1),
whereU(1) is the maximal stability subgroup ofSU(2) with respect to the state|j, j〉, i.e.
the subgroup of all elements ofSU(2) which leave|j, j〉 invariant up to a phase factor.
Hence the above construction can be treated as a particular case of the general construction
of group-theoretic coherent states.

Expansion of a coherent state in the eigenbasis ofJ 2 andJz reads

|ϑ, ϕ〉 =
√

2j + 1
m=j∑
m=−j

sinj−m
(
ϑ

2

)
cosj+m

(
ϑ

2

)
exp(i(j −m)ϕ)

[(
2j

j −m
)]1/2

|j,m〉.

(3.4)

The expectation values of the components ofJ are

〈j, ϑ, ϕ|J |j, ϑ, ϕ〉 = j (2j + 1)(sinϑ cosϕ, sinϑ sinϕ, cosϑ) (3.5)

which establishes the link between the coherent state|j, ϑ, ϕ〉 and the vector(ϑ, ϕ) oriented
along the direction defined by a point on the sphere.

The infinite basis formed in the Hilbert space by the coherent states is overcomplete.
Two differentSU(2) coherent states overlap unless they point towards two opposite poles
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on the sphere. Expanding two coherent states in the|j,m〉 basis (3.4) we can calculate their
overlap as

|〈ϑ ′, ϕ′|ϑ, ϕ〉|2 = (2j + 1)2
(

1+ cos4

2

)2j

(3.6)

where4 is the angle between two vectors onS2 related to the coherent states|ϑ, ϕ〉 and
|ϑ ′, ϕ′〉. Hence the transition kernelK defined by (2.9) takes (forU = I ) the form

K((ϑ, ϕ), (ϑ ′, ϕ′)) = |〈ϑ
′, ϕ′|ϑ, ϕ〉|2
2j + 1

= 2j + 1

22j
[1+ cosϑ cosϑ ′ + sinϑ sinϑ ′ cos(ϕ − ϕ′)]2j . (3.7)

The overlap decreases to 0 withj for |ϑ, ϕ〉 6= |ϑ ′, ϕ′〉 and sufficiently largej .

4. Measurement entropy for two hemispheres

We would like to compute the CS-measurement entropy for the case corresponding to the
physical process of simultaneous approximate measurement of different spin components.
Let us first consider the simplest case, where the classical phase space� equal to the two–
dimensional sphereS2 is divided into two hemispheresE+ = {(ϑ, ϕ) : ϕ ∈ [0, 2π), ϑ ∈
[0, π/2]} andE− = {(ϑ, ϕ) : ϕ ∈ [0, 2π), ϑ ∈ (π/2, π ]}. The result of any measurement
i = ±1 gives information about the orientation of the spin.

4.1. Transition probabilities

The CS-transition probabilitiesPCS for the results i0, . . . , in−1 of n consecutive
measurements are obtained from (2.8) and (2.9) by setting the evolution operatorU to
be the identity and taking the appropriate integration domains. The explicit integral reads

PCS
i0,...,in−1

= (4π)−n
∫
Ei0

sinϑ0 dϑ0 dϕ0 . . .

. . .

∫
Ein−1

sinϑn−1 dϑn−1 dϕn−1

n−1∏
u=1

K((ϑu−1, ϕu−1), (ϑu, ϕu)) (4.1)

where the kernelK is given by (3.7), andiu = ±1 for u = 0, . . . , n − 1. Straightforward
integration allows one to obtain analytical results for low values ofn andj [48].

In spite of the trivial dynamics (U ≡ I ) the result of the first measurement may differ
from the second one, and consequently, all the transition probabilities are nonzero. In the
semiclassical limitj → ∞ the ‘mixed’ transition probabilities (e.g.P CS

+− = PCS
−+) vanish,

while the survival probabilities (e.g.PCS
++, PCS

+++) tend to 1
2. The geometric symmetry of

reflection induces the invariance of the probabilities with respect to the interchange of signs
(+ ←→ −). Moreover, due to the time-reversal invariance, the CS-probability for any
sequence of results equals the CS-probability of the same sequence written in the reverse
order (e.g.PCS

++−+ = PCS
+−++). One can observe that for a given number of measurements

n, the probabilities for two sequences of results with the same number of transitions are
similar (e.g. for one transition:PCS

+−−− ≈ PCS
++−−; for two transitions:PCS

+−−+ ≈ PCS
++−+).

Direct integration of (4.1) does not allow one to obtain the CS-probabilities for larger values
of j or n, which is necessary to estimate the CS-measurement entropy. For this purpose it
is convenient to formulate integrals in matrix form.
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4.2. Matrix formulation of integrals

Computation of the CS-probabilities can be significantly simplified by applying the general
method described in section 2.5. This can be seen, especially, for the division of the sphere
into several latitudinal componentsE1, . . . , Ek, whereEi = {(ϑ, ϕ) : ϕ ∈ [0, 2π), ϑ ∈ Wi}
for i = 1, . . . , k, and {W1, . . . ,Wk} is a partition of the interval [0, π ]. Performing the
substitutionsti = cosϑi and integrating overϕ0, . . . , ϕn we can simplify formula (4.1)
writing

PCS
i0,...,in−1

=
∫
W̃i0

1
2dt0 . . .

∫
W̃in−1

1
2dtn−1

n−1∏
u=1

K̃(tu−1, tu) (4.2)

whereW̃i = {cost : t ∈ Wi} for i = 1, . . . , k, and the reduced kernel̃K is given by

K̃(t, s) = 2j + 1

42j

2j∑
q=0

(
2j

q

)2

((1+ t)(1+ s))q((1− t)(1− s))2j−q =
2j∑
l,r=0

alr t
lsr (4.3)

for t, s ∈ [−1, 1]. Thus the kernelK̃ is represented in the form (2.18) with̃� = [−1, 1],
dµ̃(t) = 1

2dt , fl(t) = t l , gr(s) = sr for t, s ∈ �̃, andM = 2j . Note that{W̃1, . . . , W̃k}
forms a partition of�̃. Hence we can apply formula (2.19) for the CS-probabilities writing
them in the matrix form

PCS
i0,...,in−1

= 〈(1, 0, . . . ,0)|(B(in−1)AB(in−2)A . . . AB(i0))|(1, 0, . . . ,0)〉 (4.4)

with A = [alr ]
2j
l,r=0 (given by (4.3)) andB(i)rl = 1

2

∫
W̃i
t l+r dt for i = 1, . . . , k;

l, r = 0, . . . ,2j .
If we divide the sphere into two hemispheres, thenB(i)rl = il+r/2(l+r+1) for i = ±1;

l, r = 0, . . . ,2j . In this case (4.4) takes a particularly simple form forj = 1
2

PCS
i0,...,in−1

= 1

2n
〈(1, 0)|

(
1 i0/2
i0/2 1

3

)(
1 i1/2
i1/2 1

3

)
. . .

(
1 in−1/2

in−1/2 1
3

)
|(1, 0)〉 (4.5)

where the results of the measurementsiu are equal to−1 or+1 for u = 0, . . . , n− 1.

4.3. Limitn→∞
In the remainder of this section we assume thatC is the partition of the sphere into two
hemispheres, i.e.C = {E+, E−}. Moreover, we setHmeas := Hmeas(C), Hn := Hn(C) and
Gn := Gn(C).

In table 1 we present partial and relative entropies calculated for two different values
of j with the aid of the formulae (2.10), (2.11) and (4.4).

We assert in section 2.4 (4) thatHn converges toHmeasexactly as 1/n. One can deduce
from table 1 that the convergence ofGn to the same limit is much faster. In fact, it
seems to be exponential. In section 6 we give some arguments supporting this statement.
Thus, to calculate the limiting value we use the extrapolationsHn ∼ Hmeas+ α/n and
Gn ∼ Hmeas+ γ cn. The outcomes are contained in table 1. Let us observe that the rate
of convergence decreases withj and hence the method of computing the CS-measurement
entropy based on formula (4.4) does not lead to satisfactory results in the semiclassical
limit, i.e. for large quantum numberj .
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Table 1. Partial entropyHn/n and relative entropyGn for the partitionC = {E+, E−}, the
quantum numberj = 1

2 and j = 10, and the number of measurementsn = 1, . . . ,8 with an
extrapolation ton→∞.

j = 1
2 j = 10

n Hn/n Gn Hn/n Gn

1 0.693 147 180 559 0.693 147 180 559 0.693 1471 0.693 1471
2 0.677 355 209 358 0.661 563 238 157 0.532 3993 0.371 6514
3 0.672 009 066 259 0.661 316 780 060 0.473 4456 0.355 5383
4 0.669 335 388 698 0.661 314 356 017 0.442 9253 0.351 3642
5 0.667 731 177 545 0.661 314 332 934 0.424 3127 0.349 8623
6 0.666 661 703 407 0.661 314 332 713 0.411 8012 0.349 2438
7 0.665 897 793 307 0.661 314 332 711 0.402 8258 0.348 9737
8 0.665 324 860 733 0.661 314 332 711 0.396 0793 0.348 8532
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

∞ 0.661 3 0.661 314 332 711 0.348 8 0.348 7560

4.4. Semiclassical regimej � 1

The matrix formula for the CS-probabilities is useful in numerical calculations, but as was
mentioned above, does not allow us to compute the entropy for very large values ofj . For
two measurements, however, one can obtain some exact results. Applying (4.2) and (4.3)
we get an analytical formula for the CS-probability valid for anyj :

PCS
+− =

(
4j + 1

2j

)
2−4j−2. (4.6)

(For the proof see appendix C.)
Due to symmetryPCS

−+ = PCS
+− and PCS

++ = PCS
−− = 1

2 − PCS
+−. It is convenient to

introduce aj -dependent coefficientτj = PCS
+−/P

CS
++, which tends to zero in the semiclassical

limit j →∞. Using formula (4.6) we obtain

τj =
(4j+1

2j

)
24j+1− (4j+1

2j

) . (4.7)

In order to get an upper bound for the CS-measurement entropy we may compute the
relative entropyG2 = H2−H1 (see section 2.4). The partial entropy after one measurement
H1 equals ln 2, independently ofj . Summing over four possible paths++,+−,−+,−−
one can compute the partial entropyH2 obtaining finally the formula

G2 = ln(τj + 1)− τj

τj + 1
ln(τj ) (4.8)

which is symmetric with respect to an involutionτj → 1/τj .
Inserting the expression (4.7) into the above formula we get an explicit approximation

for Hmeas. It is represented by a full curve in figure 3, while circles denote the results
obtained numerically for smallj with the help of the matrix method presented above.
In the semiclassical rangej � 1 it is legitimate to apply the Stirling approximation of
the factorial in (4.7), which gives a fair approximation and an upper bound for the CS-
measurement entropy

Hmeas< G2 ∼ ln j

2
√

2πj
. (4.9)
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Figure 3. CS-measurement entropyHmeas for two hemispheres as a function of the quantum
numberj . Circles represent numerical results, while the full curve stands for an upper bound
G2 given by (4.8).

It is worth noting that formula (4.8) can be obtained from the Markovian approximation
of the CS-probabilities. Let us assume for a moment that the probabilitiesPCS

i0,...,in−1
were

generated by a Markov shift. It follows from the symmetry of the problem that its initial
vector would be( 1

2,
1
2) and its transition matrixQ would have the form

Q =
(

a 1− a
1− a a

)
wherea = 2PCS

++ =
1

τj + 1
. (4.10)

In fact, our probabilitiesPCS
i0,...,in−1

are not generated by a Markov shift; nevertheless, one
can consider the Markovian approximation as above. Then the approximate probabilities
PMar depending only on the numberL of ‘transitions’ from one hemisphere to the other
(L = 1

2(n− 1−∑n−1
q=1 iq iq−1)) are equal to

PMar
i0,...,in−1

= 1
2Qi0,i1 × · · · ×Qin−2,in−1 = 1

2(1− a)Lan−1−L = τLj

2(τj + 1)n−1
. (4.11)

In this approximation the probabilities form a geometric series with the same ratioτj for
any number of measurementsn.

Summing over all 2n possible sequences we obtain the following approximate formula
for the partial entropy:

HMar
n = −

n−1∑
L=0

(
n− 1

L

)
τLj

(τj + 1)n−1
ln

[
τLj

2(τj + 1)n−1

]

= ln 2+ (n− 1)

[
ln(τj + 1)− τj

τj + 1
ln(τj )

]
. (4.12)

Now dividing both sides byn and performing the limitn → ∞ we arrive at the relative
entropyG2 given by (4.8).

Let us recall that in the semiclassical limit(j →∞) the relative measurement entropy
G2 tends to zero as lnj/

√
j . This defines the scale in which the quantum effects are

revealed. Unfortunately the precision of this approximation is not sufficient to conclude
whether or not the logarithmic prefactor describes correctly the decay of the measurement
entropyHmeas in the semiclassical limit, or whether its existence is an artifact introduced
by the approximation.
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Figure 4. Partition of the sphere divided along a parallel2c into two connected
cells.

Figure 5. Partial entropyHn/n for the partition presented in figure 4 as a function of the
parameter cos2c (n = 8). The values ofj are given in the figure.

5. CS-measurement entropy for various partitions

The CS-measurement entropy depends on the number of cells in a partition and on their
shape. In this section we consider several partitions of a different type. Figures 4 and 7
contain schemes for these partitions. In all the cases we compute the entropy using the
matrix formulation introduced in sections 2.5 and 4.2. As in the preceding section we
assume thatC denotes the respective partition of the sphere, puttingHmeas := Hmeas(C),
Hn := Hn(C), andGn := Gn(C).

5.1. Two connected cells

Let us split the sphere into two segments along a parallel2c. The northern segmentE+
contains points withϑ ∈ [0,2c], while the southernE− those withϑ ∈ (2c, π ]. This
partition is shown schematically in figure 4.

Figure 5 represents the dependence of the partial entropyHn/n on the variable cos2c

for n = 8 measurements and several values ofj . For each value ofn and j the partial
entropy achieves its maximum at cos2c = 0, for the partition into two hemispheres. The
solid horizontal line drawn at ln 2 represents the maximal entropy admissible for the partition
containing two cells. For increasing values ofj the partial entropy decreases and tends to
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Figure 6. Partial entropiesHn/n and measurement entropyHmeas= limn→∞Hn/n for the
partition presented in figure 4 withj = 1

2 (light curves), andj = 5 (heavy curves).

Figure 7. Partition of the sphere into (a) two cells plotted out
by parallels2d andπ − 2d : a spherical zone and the union
of two spherical segments; (b) two disconnected cells created
by the equator and the spherical wedge of the radian measure
8d .

zero forj →∞.
For any of these partitions the partial entropyHn/n approaches the limiting valueHmeas

approximately as 1/n (see section 2.4 (4)). As in the previously discussed case of two
hemispheres, we estimate the limiting valueHmeas by computing the relative entropyGn.
Figure 6 shows a comparison of the partial entropiesHn/n with Hmeas extrapolated in this
way for j = 1

2 andj = 5. The difference increases with the spin lengthj .

5.2. Two disconnected cells

Let us now analyse another two classes of partitions of the sphere into two cells. In the
first case (figure 7(a)) we divide the sphere into three parts along parallelsπ −2d and2d ,
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Figure 8. CS-measurement entropyHmeas as a function of the number of cellsk for j = 1
2

(circles). The full curve represents the function lnk. The inset shows the dependence of
Hmax := ln k −Hmeason k−2 obtained fork = 30, . . . ,1000.

and then join the lower and upper parts, thus obtaining two cells: a connected spherical
zone and the disconnected union of two spherical segments. The CS-measurement entropy
changes in this case from 0 (for2d = 0) to ln 2 (for 2d = π/3), which is the largest
possible value for the CS-measurement entropy with respect to a two-element partition.

In the second case (figure 7(b)) we start from the splitting of the sphere into the lower
and upper hemispheres. Next, we cut symmetrically two ‘pieces of cake’ out of both
hemispheres, and then join the four parts across. We get in this way two disconnected cells
marked in black and white in figure 7(b). The CS-measurement entropy changes from ln 2
(for 8d = π ) to 0.6613. . . (for 8d = 0). The latter case relates to the partition of the
sphere into two hemispheres studied in section 4.

5.3. Many cells

Let us considerk disjoint zones created on the sphere byk − 1 parallels. As in the case
of two cells, represented in figure 4, the CS-measurement entropy seems to achieve its
maximum if the cells have the same volume= 1/k. We computed the CS-measurement
entropyHmeas(Ck) for the partitionsCk of the sphere intok = 2, . . . ,1000 zones of the same
volume. Note that for largek even the second relative entropyG2(Ck) provides a reliable
estimate forHmeas(Ck). In figure 8 we present the CS-measurement entropy displayed for
j = 1

2 as a function of the number of cellsk (circles). The full curve represents the function
ln k, which gives the upper bound for the entropy with respect to a partition consisting of
k cells.

Since for any partitionC and a quantum mapU the CS-dynamical entropy is defined
by (2.14) as the difference ofH(U, C) and Hmeas(C), it is convenient to consider the
quantityHmax(Ck) := ln k − Hmeas(Ck), limiting the partition-dependent dynamical entropy
Hdyn(U, Ck) from above. From (2.17) and (3.7) we know thatHmax(Ck) 6 ln(2j + 1) as
H1(Ck) = ln k. Although using this method one can establish the finiteness of the partition-
independent dynamical entropyHdyn(U) given by (2.15), this upper bound seems to be
rather crude. In factHmax(Ck) decreases withj . It is interesting to observe that this quantity
converges fork→∞. The limiting value depends onj and is close to 0.06 for j = 1

2. The
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inset in figure 8 shows the dependence ofHmax(Ck) on k−2 for k = 30, . . . ,1000; j = 1
2.

The data displayed in this way are fitted well by a straight line, which allows us to postulate
an approximate relationHmeas(Ck) ≈ ln k − 0.059 997 45+ 0.1637/k2, found for j = 1

2.

6. CS-entropy and iterated function systems

In this section we establish a relationship between CS-entropy and iterated function systems
(IFSs). Firstly, we show how to obtain an IFS from a bistochastic kernel and a partition of
the phase space. Then, we use this system to get an integral formula for CS-entropy and
propose a new method of computing CS-entropy based on the ergodic theorem for IFSs.
For more information on IFSs see [64–66].

6.1. Iterated function systems and an integral formula for CS-entropy

We follow the notation of sections 2.4 and 2.5. With each cellEi (i = 1, . . . , k) of the
partition we associate an(M + 1)× (M + 1) matrixD(i) = B(i)A. We consider functions
pi : RM → R+ and partial mapsFi : RM → RM given by

pi(λ) = (1, 0, . . . ,0)(D(i)(1, λ)) (6.1)

and

Fi(λ) = (D(i)(1, λ))/pi(λ) (6.2)

for λ ∈ RM , i =, 1 . . . , k.
Let us suppose that the functionsg0 ≡ 1, g1, . . . , gM are linearly independent. Then

one can show that
(0) pi(λ) > 0 for i = 1, . . . , k and

∑k
i=1pi = 1, i.e. the functions{pi}i=1,...,k can be

treated as place-dependent probabilities.
Moreover, we shall assume that there exists a setX ⊂ RM such that
(a)X is a compact set withλ0 := (∫

X
g1, . . . ,

∫
X
gM) ∈ X,

and for everyi = 1, . . . , k:
(b) Fi(X) ⊂ X,
(c) pi |X > 0,
(d) Fi |X is a Lipschitz function with the Lipschitz constantci < 1.
Then the following assertions hold:
(1) F = (Fi, pi)ki=1 is an iterated function systemonX.
(2) The IFSF generates the following operatorV acting onM(X) (the space of all

probability measures onX):

(V ν)(B) =
k∑
i=1

∫
F−1
i (B)

pi(λ) dν(λ) (6.3)

for ν ∈ M(X) andB ∈ B(X), whereB(X) denotes the family of all Borel sets onX. This
operator describes theevolution of probability measuresunder the action ofF . We shall
denote by(Zνn)n∈N the associated Markov stochastic process having the initial distribution
ν.

(3) There is a uniqueinvariant probability measureµ for the IFS defined above fulfilling
the equationVµ = µ. This measure is attractive, i.e.V nν converges weakly toµ for every
ν ∈ M(X) asn→∞.

(4) The relative entropiesGn are given by

Gn =
∫
X

hk(p1(λ), . . . , pk(λ)) d(V nδλ0)(λ) for n ∈ N (6.4)
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where hk is the Shannon–Boltzmann entropy function given byhk(p1, . . . , pk) =
−∑k

i=1pi lnpi for anypi > 0 such that
∑k

i=1pi = 1.
(5) The CS-entropyHmeas is given by anintegral formula

Hmeas=
∫
X

hk(p1(λ), . . . , pk(λ)) dµ(λ). (6.5)

Let us sketch briefly the proof of the above statements. Assertion (1) follows from (0)
and assumption (b). The Markov processes generated by IFSs were analysed in [64] and
[67]. Assertion (3) can be deduced from assumptions (c) and (d), and [65, theorem 2.1].
Formulae (6.4) and (6.5) were proved by Fanneset al in [56] for algebraic measures, i.e.
under the assumption that the formula for probabilities analogous to (2.19) holds. They
followed an earlier result of Blackwell [68] on the entropy of functions of a finite-state
Markov chain. In both these papers, however, the authors did not refer to the theory of
IFSs and assumed that the matricesD(i) are positive. In spite of this, their proof can also
be applied in our case. For more details we refer the reader to [55].

6.2. Ergodic theorem and random algorithm for computing CS-entropy

The key point in our reasoning is to find a setX fulfilling conditions (a)–(d) above. In all
the cases we analysed this task was not too difficult to accomplish. We shall give some
examples below. Utilizing the results presented in [64] and [69] we can go even further and
prove (under some additional assumptions) thatGn tends toHmeasexponentially. Moreover,
applying theKaijser–Elton ergodic theorem for IFSs(see [70] and [71]) we obtain the
following formula:

Hmeas= lim
n→∞

1

n

n−1∑
l=0

h(Zνl ) almost everywhere (6.6)

whereh = hk(p1, . . . , pk) andν is an arbitrary initial distribution.
This formula gives another numerical method of computing CS-entropy. To obtain the

valueHmeasit suffices to calculate Ceasaro means of the functionh along a trajectory of the
stochastic process(Zνl )l∈N. This is a particular case of the general method which appeared
under the name of random iterated algorithm in [66]. The convergence in (6.6) seems to be
rather slow, namely asn1/2. Note, however, that here the time computational complexity
grows with k (the number of elements of the partition) linearly, whereas in the ‘matrix
method’ we considered in sections 2.5 and 4.2 it grows polynomially (askn). Hence the
method based on formula (6.6) may be specially useful for large values ofk.

6.3. Example

Now let us consider the partitionC3 of the sphere into three zones of equal volume:
E1 = {(ϑ, ϕ) : ϕ ∈ [0, 2π), ϑ ∈ [0, π/3]}, E2 = {(ϑ, ϕ) : ϕ ∈ [0, 2π), ϑ ∈ (π/3, 2π/3]},
andE3 = {(ϑ, ϕ) : ϕ ∈ [0, 2π), ϑ ∈ (2π/3, π ]}. Setj = 1

2. Then applying formula (4.3)
one can show that the matricesD(1),D(2),D(3) are given by

D(1) =
( 1

3
2
9

2
9

13
81

)
D(2) =

( 1
3 0
0 1

81

)
D(3) =

( 1
3 − 2

9

− 2
9

13
81

)
. (6.7)

Hence and from (6.1), (6.2) we obtain

p1(λ) = 1
3 + 2

9λ p2(λ) = 1
3 p3(λ) = 1

3 − 2
9λ (6.8)
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Figure 9. The attracting invariant set for the IFS generated by the partition of the sphere
into three zones of equal volume for (a) j = 1

2 , (b) j = 1. The values of the CS-
measurement entropy computed by the random iterated algorithm are (a) Hmeas= 1.053 06. . .,
(b) Hmeas= 0.992 20. . ..

and

F1(λ) = (18+ 13λ)/(27+ 18λ)

F2(λ) = λ/27

F3(λ) = (−18+ 13λ)/(27− 18λ).

(6.9)

The setX = [−1, 1] fulfils conditions (a)–(d) with the contraction rates for the mapsF1, F2,

andF3 equal toc1 = 1
3, c2 = 1

27, andc3 = 1
3, respectively. The support of the attracting

invariant measureµ presented in figure 9(a) is a Cantor-like fractal set.
Now let us consider the casej = 1 (with the same partitionC3). Applying formulae

(4.3), (6.1), and (6.2), we can compute the mapsp1, p2, p3, and F1, F2, F3, as before.
Now, the setX = {(λ1, λ2) : λ1 ∈ [−1, 1], λ1

2 6 λ2 6 1} satisfies conditions (a)–(d). The
attractive invariant set for this IFS is presented in figure 9(b). Also in this case it has a
fractal structure. The view of the middle part of the IFS through a magnifying glass is
shown in figure 9(b) to underline its self-similar structure. In the figure caption we give
the values of the CS-measurement entropy obtained with the aid of the random algorithm.

We have also applied this technique to compute numerically the CS-measurement
entropy for other partitions of the phase space andj ranging from 1

2 to 10. For the
partition of the sphere into two hemispheres the results obtained in this way coincide with
those received from the extrapolation of the relative entropiesGn and collected in table 1.

7. Rényi CS-measurement entropy

In this section we consider quantities which are natural generalizations of CS-measurement
entropy introduced in section 2.3. We assume thatC is a partition of the phase space and
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the CS-probabilities are given by (2.8). We shall writeHn for Hn(C), Gn for Gn(C), and
Hmeas for Hmeas(C). Moreover, we choose the parameterβ > 0 such thatβ 6= 1.

There are at least two different ways of introducing a Rényi-type version of CS-
measurement entropy. Firstly, we can defineCS-measurement entropy of orderβ as

Hmeas(β) := lim sup
n→∞

1

n
Hn(β) (7.1)

where

Hn(β) := 1

1− β ln

[ k∑
i0,...,in−1=1

(PCS
i0,...,in−1

)β
]
. (7.2)

On the other hand, using the notion of Rényi conditional entropy of orderβ [63] we
can define the quantity

Gmeas(β) := lim sup
n→∞

Gn(β) (7.3)

where

Gn(β) :=


H1(β) for n = 1

1

1− β ln

[ k∑
i0,...,in−1=1

(PCS
i0,...,in−1

)β(PCS
i0,...,in−2

)1−β
]

for n > 1.
(7.4)

The quantitiesGn(β) are the analogues of the relative entropies considered in section 2.
Note thatHn(β) −→ Hn(β −→ 1) andGn(β) −→ Gn(β −→ 1). This justifies the notation
Hn(1) := Hn, Gn(1) := Gn, andHmeas(1) = Gmeas(1) := Hmeas. In contrast to the case
β = 1, the quantitiesHmeas(β) andGmeas(β) need not be equal in general (see figure 11).

The numberGn(β) (β 6= 1) can be computed from the following integral formula
analogous with (6.5):

Gmeas(β) = 1

1− β ln
∫
X

k∑
i=1

(pi(x))
β dµ(x) (7.5)

where(X, (Fi)ki=1, (pi)
k
i=1) is the iterated function system defined in section 6 andµ is the

attractive invariant measure for this system [55].
Now let us consider the case of the division of the sphere into two hemispheres. As in

section 4.4 we can use the Markovian approximationG2(β) to evaluate the limiting value
Gmeas(β) for large values ofj . Similar reasoning leads to the formula

G2(β) = 1

1− β ln

[
1+ τβj
(1+ τj )β

]
(7.6)

whereβ 6= 1 andτj is given by formula (4.7).
The functionG2 defined by (4.8) and (7.6) is continuous. Moreover, we can compute

the limitsG2(β) −→ ln 2 (β −→ 0) andG2(β) −→ ln(1+τj )(β −→∞). Asymptotically
(for largej ) we obtain

G2(β) ∼



1

1− β
1

(2πj)β/2
for β < 1

ln j

2(2πj)1/2
for β = 1

β

β − 1

1

(2πj)1/2
for β > 1.

(7.7)
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Figure 10. Markovian approximationG2 of the Ŕenyi CS-measurement entropy as a function
of the parameterβ for the partition of the sphere into two hemispheres and selected values of
the quantum numberj labelling the curves.

Figure 11. Two versions of the Ŕenyi CS-measurement entropyHmeas, Gmeas, and the
Markovian approximationG2 as a function of the rescaled parameterζ = 4 arctan(β)/π for
j = 1 andj = 5, in the case of the partition of the sphere into two hemispheres.

In figures 10 and 11 we treat the case of the partition of the sphere into two hemispheres.
In figure 10 we present the Markovian approximationG2 for different values of the
semiclassical parameterj . We see that all the curves start from the value ln 2 (topological
entropy) and then decrease when the value of the parameterβ grows. Moreover, we can
observe thatG2 decreases whenj increases and converges to 0 (which is the value of the
classical Ŕenyi entropy in this case) ifj tends to∞. In figure 11 we compare two versions of
the Ŕenyi CS-measurement entropyHmeas(ζ ), Gmeas(ζ ), and the Markovian approximation
G2(ζ ) for two different values of the parameterj . The variableζ = 4 arctan(β)/π changes
from 0 to 2, whenβ varies from 0 to∞. The quality of the Markovian approximationG2

becomes worse for large values ofβ and j , still, it gives an upper bound for the Rényi
CS-entropyGmeas.
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8. Conclusions

This work has been devoted to the study of the notion of CS-measurement entropy. We
have collected the basic theoretical material in sections 2.4 and 2.5, analysed numerical
algorithms for computing CS-measurement entropy in sections 4.2 and 6, examined several
examples in sections 4 and 5, and proposed two generalizations of the notion in section 7.
The methods developed here can be used to investigate of the CS-measurement entropy for
a broad class of partitions of the phase space and values of the semiclassical parameterj .
The semiclassical limit (largej ) has, as usual, been most difficult to treat. Nevertheless,
even in this case, we have obtained several approximate results in section 4.4. We have
restricted our attention to the spin (SU(2)) coherent states defined on the sphereS2. We
believe, however, that our approach can be extended to other phase spaces and to other
families of coherent states.

The fact that the measurement entropyHmeas can be calculated as the limit of the
relative entropiesGn has played a crucial role in our analysis. As we have argued, the
approach to the limit is exponential in this case. The rate of convergence seems to be
strictly connected with the limiting value of the sequence: the larger the entropyHmeas, the
faster the convergence. A similar dependence was reported for the KS-entropy of piecewise
analytic one-dimensional maps by Szépfalusy and Gÿorgyi [36]. They estimated the decay
of the relative entropiesGn as∼ e−2H(3)n, whereH(3) is the Ŕenyi entropy of order 3.
The convergence we have observed for CS-entropies is much faster.

In [13] we formulated a general programme for analysingquantum chaosin terms of CS-
entropy. Here, we have studied CS-measurement entropy only, that is, the CS-entropy of the
identity operator, which measures the randomness coming from the process of approximate
sequential quantum measurement. Still, our main purpose is to studyCS-dynamical entropy,
which is connected only with the unitary dynamics of the quantum system and is defined
as the difference of two quantities: the CS-entropy of the given unitary operator and the
CS-measurement entropy (see formula (2.14)). The precise analysis of the notion of CS-
measurement entropy is the first essential stage in performing this task. We expect that
the methods elaborated here can also be used in the investigation of the CS-entropy for an
arbitrary unitary mapU , and so, in studying CS-dynamical entropy. The main difficulty
in extending our approach to the general case is that we have to deal with much larger
matrices; nevertheless, the numerical algorithms can be managed in much the same way. In
a forthcoming publication we shall try to calculate the CS-dynamical entropy for quantized
regular and chaotic maps.

In this work we have presented an effective method of computing the dynamical entropy
of a system viaiterated function systems. Although this technique has been applied here
only in calculations of the CS-measurement entropy, we believe that it may be useful for
computing the CS-dynamical entropy of quantum systems, as well as the Kolmogorov–Sinai
entropy of classical systems.
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Appendix A. Bounds for CS-measurement entropy

Proof of the inequalities (2.16)

We assume thatC denotes a finite partition of the phase space and we putHmeas:= Hmeas(C),
Hn := Hn(C), andGn := Gn(C).

It follows from the general theory of dynamical entropy [50, 51] that the sequence
{Hn}n∈N is subadditive, i.e.

Hn+l 6 Hn +Hl for n, l ∈ N. (A1)

Let now n, l ∈ N, i0, . . . , in+l−1 = 1, . . . , k. Then from (2.8) we deduce

PCS
i0,...,in+l−1

=
∫
Ei0

dx0 . . .

∫
Ein−1

dxn−1

n−1∏
u=1

K(xu−1, xu)

∫
Ein

dxn K(xn−1, xn)

×
∫
Ein+1

dxn+1 . . .

∫
Ein+l−1

dxn+l−1

n+l−1∏
u=n+1

K(xu−1, xu)

6 PCS
i0,...,in−1

K0P
CS
in,...,in+l−1

. (A2)

Taking the logarithms of both sides of (A2), multiplying them by−PCS
i0,...,in+l−1

, and summing
over i0, . . . , in+l−1 = 1, . . . , k we get

Hn+l > Hn − lnK0+Hl for n, l ∈ N. (A3)

Combining (A1) with (A3) and dividing the expressions byn we have

1

n
Hn − 1

n
lnK0 6

1

n
(Hl+n −Hl) 6 1

n
Hn (A4)

and so

1

n
Hn − 1

n
lnK0 6

1

n

n∑
i=1

Gl+i 6
1

n
Hn. (A5)

Letting l→∞ we obtain the desired conclusion.

Appendix B. Convergence rate of partial entropies

Proof of property 2.4 (4)

We follow the notation of appendix A. From 2.4 (1) we get

1

n
Hn = 1

n

n∑
i=1

Gi >
1

n
H1+ n− 1

n
Hmeas. (B1)

Hence

1

n
Hn −Hmeas>

H1−Hmeas

n
> 0. (B2)

On the other hand (2.16) implies

1

n
Hn −Hmeas6

lnK0

n
. (B3)

Combining (B1) and (B2) we get the required result.
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Appendix C. Formula for the second-order CS-probabilities

Proof of formula (4.6).

Set 2j = M. Then, from (4.2) and (4.3) we have

PCS
+− =

∫ 1

0

dt

2

∫ 0

−1

ds

2
K̃(t, s)

= M + 1

4M+1

M∑
q=0

(
M

q

)2 ∫ 1

0
dt (1+ t)q(1− t)M−q

∫ 0

−1
ds (1+ s)q(1− s)M−q

= 1

(M + 1)4M+1

M∑
q=0

RMq R
M
M−q (C1)

where

RMp := (M + 1)

(
M

p

)∫ 1

0
dt (1+ t)p(1− t)M−p. (C2)

Now we need the following two lemmas, which we shall prove later.

Lemma 1.

RMp =
p∑
s=0

(
M + 1

s

)
(C3)

and

Lemma 2.
M∑
q=0

RMq R
M
M−q = (2M + 1)

(
2M

M

)
. (C4)

Combining (C1) and (C4) we get

PCS
+− =

1

(M + 1)4M+1
(2M + 1)

(
2M

M

)
=
(

2M + 1

M

)
1

4M+1
(C5)

which establishes the formula.

Proof of lemma 1.We proceed by induction. Clearly,RM0 = 1. Assuming (C3) to hold for
p, we shall prove it forp + 1. We have

RMp+1 = (M + 1)

(
M

p + 1

)∫ 1

0
dt (1+ t)p+1(1− t)M−p−1. (C6)

Integrating by parts we obtain

RMp+1 =
M + 1

M − p
(
M

p + 1

)
+ (M + 1)(p + 1)

M − p
(
M

p + 1

)∫ 1

0
dt (1+ t)p(1− t)M−p. (C7)

By the induction assumption

RMp+1 =
(
M + 1

p + 1

)
+ RMp (C8)

which completes the proof.
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Proof of lemma 2.Applying lemma 1 we deduce that

M∑
q=0

RMq R
M
M−q =

M∑
s,l=0;
s+l6M

(
M + 1

s

)(
M + 1

l

)
((M + 1)− (s + l))

=
M+1∑
r=0

r∑
s=0

(
M + 1

s

)(
M + 1

r − s
)
((M + 1)− r). (C9)

Using the well known combinatorial identities

L∑
s=0

(
L

s

)(
L

r − s
)
=
(

2L

r

)
(C10)

L∑
r=0

(
2L

r

)
= 1

2

(
4L +

(
2L

L

))
(C11)

L∑
r=0

(
2L

r

)
r = L

2
4L (C12)

we conclude that
M∑
q=0

RMq R
M
M−q =

M+1∑
r=0

(
2M + 2

r

)
((M + 1)− r)

= M + 1

2

(
2M + 2

M + 1

)
= (2M + 1)

(
2M

M

)
(C13)

which proves the lemma.
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