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Abstract. Coherent states (CS) quantum entropy can be split into two components.
The dynamical entropy is linked with the dynamical properties of a quantum system.
The measurement entropy, which tends to zero in the semiclassical limit, describes the
unpredictability induced by the process of a quantum approximate measurement. We study
the CS-measurement entropy for spin coherent states defined on the sphere discussing different
methods dealing with the limit: time tends to infinity. In particular, we propose an effective
technique of computing the entropy by iterated function systems. The dependence of CS-
measurement entropy on the character of the partition of the phase space is analysed.

1. Introduction

During the last decade a lot of attention has been paid to the analysis of quantum analogues
of chaotic classical maps defined on a compact phase space. In particular, quantum versions
of the Baker map [1-3], the Arnold cat map [4, 3] (torus) and the periodically kicked top
[5-7] (sphere) become standard models often used in the stugilyaorium chaology8—10].
The classical versions of these models can be caltebtic (for the kicked top under an
appropriate choice of parameters), since the Kolmogorov-Sinai (KS) dynamical entropy of
the systems is positive. The definition of KS-entropy cannot be adopted straightforwardly
into quantum mechanics, as it is based on the concept of classical trajectory. Several
methods of generalizing KS-entropy to quantum mechanics were proposed (see [11-15] for
the complete bibliography), but most of them lead to zero entropy for all quantum systems
represented on a finite-dimensional Hilbert space. This property is common to the definitions
of quantum entropy due to Connes, Narnhoffer and Thirring [16], Gaspard [17], Alicki and
Fannes [18], and Roepstorff [19]. Therefore these concepts of quantum entropy are not
suitable to describe dynamical properties of the above-mentioned quantum maps which, due
to the compactness of the classical phase space, act on a finite-dimensional Hilbert space.
Coherent states (CS) dynamical entropyroduced in [13], appears to be more adequate
for a quantitative characterization of chaos in such quantum systems. This definition of
guantum entropy takes into account the processeafuential approximate measurement
The notion of approximate, or unsharp, or fuzzy quantum measurement has been analysed
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in the last 25 yr by Ali, Emchs and Prugale, Busch and Lahti, Davies and Lewis,
Ozawa, Schroeck and many others in the framework of the operational approach to quantum
mechanics, or stochastic (phase space) quantum mechanics (see monographs [20-23] for
details and further references). In order to get some information about the localization
of a state in a phase space one may perform double (or multiple, in a phase space of
higher dimension) quantum measurement of canonically conjugated observables. Due to
the uncertainty principle such a measurement cannot be sharp and has to be approximate.
The definition of CS-entropy is therefore based on the modified postulate of wavefunction
collapse. The original postulate ofuders and von Neumann, corresponding to a single
exact measurement, assumes that after a measurement the state undergoes a transition
to an eigenstate of the observable [24]. The modified postulate, used in the description
of an approximate multiple measurement, asserts that after the measurement the state is
transformed into an appropriate mixture of coherent states, i.e. the coherent states are
posteriori states in the sense of Ozawa [25].

The CS-entropy with respect to a given partition can be divided into two parts: the
dynamical entropywhich describes the dynamical properties of a quantum system and the
measurement entropselated to the unpredictability induced by the process of sequential
guantum measurement. The proof of the fact that in the semiclassical limit the CS-
measurement entropy tends to zero was sketched in [13]. In the same paper it was
conjectured thathe CS-dynamical entropy tends to the KS-entropy of the corresponding
classical systenif the unitary dynamics comes from an appropriate quantization procedure,
and some results in this direction were obtained.

In this work we analyse in detail CS-measurement entropy forSti€2) coherent
states, where the phase space is the two—dimensional sphere. Such an example is of special
physical interest, since it corresponds to an unsharp measurement of the spin components
[26—-29]. In [13] we proposed a general plan for studying the notion of CS-entropy. The
results obtained here constitute the first step towards the realization of this scheme.

This paper is organized as follows. In section 2 we recall the definitions of CS-
entropy, CS-measurement entropy and CS-dynamical entropy, and review some of their
basic properties. In section 3 we summarize the standard facts oS Uli2) vector
coherent states. Various methods of computing CS-measurement entropy for the partition
of the sphere into two hemispheres are presented, and the semiclassical limit is discussed
in section 4. The case of an arbitrary partition of the sphere is analysed in section 5. In
section 6 we treat yet another method of calculating CS-entropy based on the notion of
iterated function systems. The2Ryi-type generalizations of CS-entropy are introduced in
section 7. Finally, section 8 contains some concluding remarks.

2. Coherent states quantum entropy

2.1. Kolmogorov—Sinai entropy

Coherent states entropy can be regarded [13] as a generalization of the classical
Kolmogorov—Sinai entropy. Let us recall here the definition of the KS-entropy for a classical
measurable map : 2 — Q generating a discrete dynamical system. 2ebe a compact
phase space endowed with a probability meagyn@variant with respect t&§, and divided
into k disjoint measurable cell&y, ..., Ex. The time evolution of classical trajectories
during n periods is described via probabilities

P

10yeeesy i,,

L=uxeQix € Ey Sx) € Ey, ..., 8" (x) € E;, ) (2.1)
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of entering a given sequence of cells, whére-1,...,k; 1 =0,...,n— 1. It is assumed
that the initial points, determining uniquely each trajectory, are distributed uniformly in the
phase space with respect to the meagure
The partial entropy of is
k
Hy=— Y P, NP (2.2)
i0,..in—1=1

the KS-entropy with respect to the partitiadh= {E1, ..., E;} is given by

1
Hys(S,C) = lim -H, (23)
n—oon
and finally theKS-entropyof S is defined as [30]
Hys(S) = sngKs(S, ). (2.4)

In the above formula the supremum is taken over all possible finite partitions of the phase
space. A partition for which the supremum is achieved is cajlstkerating Knowledge of a
k-element generating partition for a given map allows one to represent the time evolution of
the system in @&-letters symbolic dynamics and to find the upper bound for the KS-entropy:
Hks(S) < Ink. For some classical systems, like the Baker map, it is straightforward to find a
generating partition and to compute the KS-entropy. On the other hand, it is usually difficult
to find a generating partition for an arbitrary classical map. Recent years brought some
progress in this field: Christiansen and Politi found a good approximation for a generating
partition for the standard map [31] and obtained a fair estimate for the KS-entropy (see also
[32]).

The convergence to the limit in (2.3) is usually slow, not faster than 1t is therefore
advantageous to consider the relative entrogiggdefined as

G, =H,—H, 4 forn>1 G1= H;. (25)

It is easy to show that the sequen€g also tends toHks [33]. This limit is usually
achieved much faster than the limit in (2.3). For example Misiurewicz and Ziemian [34]
and Ziemian [35] proved that for a certain class of maps from the unit interval onto itself
this convergence is exponential (see also [36]). It seems that such a behaviour is typical for
chaotic maps. We refer the reader to [37—40] for the review of recent results in this area.
Note that the convergence éan = % > '_1 G, is slower, since the terms of largehave
to balance a poor precision of the approximation due to the initial terms [41].

2.2. Approximate measurement and coherent states

The probabilitiesP< entering the definition of classical KS-entropy (2.2) are meaningful
under the assumption that during the time evolution of the system one can trace an individual
trajectory and determine its localization in the phase space with infinite precision. This
supposition, consistent with the principles of classical mechanics, is definitely not fulfilled
in quantum mechanics.

Information concerning the time evolution of a quantum system may be obtained by
the process of sequential measurement. The fundamental analysis of a single quantum
measurement of a discrete observabie expanded in an orthonormal basis As:=
Z,’,‘le an,|m){m|, leads to theollapse postulatef Luders and von Neumann. The canonical

measurement ofl yields with the probabilityp, = 2 4, —a(m|plm) the state reduction [24]

~ measurement,, Za,,,=a [m) (m|p|m)(m|
po = - (2.6)
> =a(mlplm)
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provided the outcome ig, wherep is a density matrix describing the state of the system
before the measurement. [i) is the only eigenstate of corresponding to the eigenvalue
an, then this formula simplifies and the act of measurement transférimgo a pure state

p' = |m){m|.

The measurement of a single observable does not provide sufficient information about the
localization of the quantum state in the phase space. Such information can be acquired only
in a simultaneous double (or multiple) approximate measurement of canonically conjugated
observables. Let us consider ardimensional complex Hilbert spadg which represents
the kinematicsof the system and a compact $Retequipped with a probability measure
w (we shall write & for du(x)) which forms aphase spaceor in other words, a space
of experimental outcomes. A correspondence between both spaces can be established by
introducing afamily of coherent states.e. a continuous mag > x —> |x) € H satisfying
the resolution of the identity”Q |x){x|dx = I [42]. In this work we use the coherent states
normalized agx|x) = N.

Following the ideas of Davies and Lewis [43] and Davies [20] we assume, in a full
analogy to (2.6), that a multiple approximate quantum measurement yields the state reduction

1 N
. measurement, . N fE,. ) (x]p1x) (x| dx
o — =

e, (x1p1x) dx

i

(2.7)

provided the outcome is in the celf;, which occurs with the probabilityP®S =

fEi (x|plx) dx. Note that if one increases the precision of the measurement of a single
variable (and simultaneously decreases the precision of the measurement of the canonically
coupled variables) this postulate reduces in the limit to the standard collapse postulate of
Luders and von Neumann. Formally, one has to replace the coherent staiesd in (2.7)

by so-calledsqueezed states

2.3. CS-probabilities and CS-entropy

Our approach to quantum entropy is based on the assumption that the knowledge about the
time evolution of a quantum state is obtained from a sequence of multiple approximate
guantum measurements. The evolution of the system between every two subsequent
measurements is governed by a unitary matfix

A scheme of the first three periods of the time evolution of a system is presented
in figure 1. Consider a quantum path encoded by the following sequence of cells:

{Ei, Ei,,..., E;_,}. Let the initial state be proportional to the identity operator, pe=
€ . .
QE) go 911 ng
o t
5 U ! U
0 ]
o i
v ]
€ i
0
© 9;0 ?’1 = UQ'OUt 9 2= UQHUt
tg 1] t, time

Figure 1. Scheme of the first three periods of the time evolution of the dynamical system. The
unitary quantum ma@/ describes the evolution of the system during each period, after which
an act of approximate measurement takes place.
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1/N - 1. The coherent states collapse postulate (2.7) allows us to calculate the probability
that a given sequence afsymbols occurs ([13], see also [44]). Namely, we have

n—1

Plz:»?--ln 1 / dX() / dxﬂ—l l_[ K(xu—la xu) (28)
wherei; =1,...,k; ! ,n—1 and the kernekK is given by
1 2
K(x,y)ZNHyIUIXH . (2.9)

We call themCS-probabilities Partition-dependentoherent states (CS) entropy®S of a
guantum mag’ is defined like its classical counterpart (2.3)

1
HSWU,C) = lim ZH,(U,0C) (2.10)
n—oo n
where
k
. CS (O]
H,(U.C):=— Y PSS, InPSS . (2.11)
10yeeeyin—1=1
andC = {Ey, ..., E;}. In the semiclassical limit the CS-entropy seems to tend to the KS-

entropy, if the quantization procedureregular [13], i.e. if some assumptions linking the
family of quantum maps with the corresponding classical map are fulfilled.

Quantum CS-probabilities can be also used to define other quantities which measure
the randomness of the system (for a recent account of such concepts see [45,46]) like
Rényi-type entropy of ordeg which we shall analyse in section 7. For some purposes, for
instance, it might be useful to defi&S-inverse participation ratio

k
v(U.C) = Y (PSS, )2 (2.12)
i0yeesin—1=1
It is an analogue of a quantity often used in solid state physics to describe localization of a
wavefunction [47], since its inverse gives the average number of occupied cells. It is linked
to CS-Renyi entropy of order 2.

In the simplest case of the trivial dynamics the quantum wiagduces to the identity
operator/. Even in this case the quantum entrai{f> does not vanish, since the coherent
states are not orthogonal and do overlap [42]. T&measurement entropy given by
[13,48]

HmeadC) i= HS(U = 1,0) (2.13)

and depends on a family of coherent states in the phase Spaoe on a finite partitiord.
The CS-dynamical entropy of a quantum map U with respect to a partifios defined
as [13,48]

Hayn(U, €) := H(U, C) — HmeadC) (2.14)
and partition-independer@S-dynamical entropgas [49]

In the present paper we study CS-measurement entropy and its dependence on a patrtition
and the semiclassical parameter. This is a preliminary step to calculating CS-dynamical
entropy, which is defined as the difference of two quantities. Moreover, the techniques we
use in computing of CS-measurement entropy can also be applied in the general case.
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2.4. Properties of CS-measurement entropy

We now review some basic properties of CS-measurement entropy. Let us assume that a
finite partitionC of the phase space is given. LetH,(C) be defined by (2.8)—(2.11) with
U =1, and letG1(C) = H1(C); G,(C) = H,(C) — H,_1(C), for n > 1. Then, applying
the general theory of entropy for random transformations [50, 51], we obtain the following
facts:

(1) the sequencen%H,l (C) and G, (C) decrease witht t0 HneadC);

(2) if a partition(’ is finer than a partitior’, then HyeadC') > HmeadC).

Next, let us observe that the kern&l which appears in (2.8) is bistochastic, i.e.
JoK(x,y)dx = [, K(x,y)dy = 1forallk, € Q. Let us denote by, the maximum of
K. Then

(3) the CS-measurement entropy fulfills the following inequalities:

1 1 1
*Hn(c) ——In KO < Hmeas(c) < *Hn (C) (2-16)
n n n

and, in consequence,
H1(C) — In Ko < HmeadC) < H1(C) (2.17)

(for the proof see appendix A).

Note that H;(C) does not depend on the family of coherent states but only on the
measureu and it is just the entropy of the partitiah with respect to the measuge |If
Q is a Riemannian manifold and is the Riemannian measure én then one can deduce
from (2) and (3) thatHnmeadC) can be arbitrarily large for a sufficiently fine partitich

It follows from (1) and (3) that

(4) if H1(C) # HmeadC), then the sequenc#H,, (C) converges to the entropffmeadC)
precisely as: L.

(For the proof see appendix B.)

Another important property of CS-measurement entropy,

(5) HmeadC) tends to 0 in the semiclassical limit,
was proved in [13] forSU (2) (spin) coherent states. The decay seems to be rather slow.
We shall try to evaluate its rate in the following.

2.5. Matrix form of CS-probabilities
LetC = {Es, ..., E;}. We assume that the kern&l entering formula (2.8) has the form

M
KG,y) =Y argfiy)  forx,yeX (2.18)
1,r=0
whereq;, € R, f;, g : @ — R are continuous, fof,r =0,..., M, and fop = go = 1 (in

fact we can always preseht in such a form if the family of coherent states comes from the
canonical group-theoretic construction (see [52-54]) with a finite-dimensional Hilbert space
‘H; then M is an increasing function of the dimension of the Hilbert space). Let us define
matricesA = [a;,]_, and B(i),, = Je &) fik)dx for [,r =0,... .M, i =1,... k.

Then the CS-probabilities are given by the first element of the following matrix product:

PES . = (B(in-1)AB(in—2)A ... AB(i0))oo. (2.19)

10yeeesy l',,,l
(The proof will appear in [55].) Now one can show that the family of the CS-probabilities
generates on the code spag®, whereS = {1, ..., k}, a shift-invariant measure, which is
algebraicin the sense of Fanneg al (see [56]). Clearly, the decomposition of the kernel



Coherent states measurement entropy 3181

K is not unique. Moreover, the assumptign= go = 1 is too restrictive. In fact, to apply
the matrix method, it is enough to know that the constant function 1 is a linear combination
of the functionsfy, ..., fu [55].

The above formula makes the calculation of the CS-entropy much easier. Moreover,
it is a starting point for the further investigation of entropy utilizing the theory of iterated
function systems. We present in section 6 some results in this direction. For a fuller
treatment we refer the reader to [55].

3. Spin coherent states

The two-dimensional spher&® can be considered as the phase space of the periodically
kicked top. This classical dynamical system is known to exhibit chaos under a suitable
choice of system parameters [5]. In order to study a quantum analogue of this system
it is convenient to consider the operator of angular momenfumts three components
{Jx, Jy, J.} are related to the infinitesimal rotations along three orthogonal fxes z} in
R3 and fulfil the standard commutation relations, [J,,] = igyunJ,, Wherel,m,n = x, y, z
andg,,, represents the antisymmetric tensor (from now on wehput I). The operators
J+ = J. £iJ, and J; are generators of the compact Lie grofip’(2). The eigenvalues
JjG+D,j=073.13 .., of the Casimir operator? = JZ + J? + J2 determine the
dimensionN = 2 + 1 of the Hilbert space®{, carrying the representation of the group.
Common eigenstateg, m), m = —j, ..., j, of the operatorg? andJ, form an orthonormal
basis inHy.

The SU(2) (spin) coherent states were introduced by Radcliffe [57] and Areethi
al [58]. For a thorough discussion we refer the reader to [42,52-54,59,60]. The
idea is the following. Each point on the sphere labelled by the spherical coordinates
(¥, ¢) corresponds to th8U (2) coherent statd j, 9, ¢) generated by the unitary operator
R0, ) = explid(singJ, — cospJ,)] acting on the reference statg, j). The natural
projectionSU(2) — SO(3) relates with the operataR (9, ¢) the rotation by the anglé
around the axis directed along the vectsing, — cosg, 0) normal to thez-axis and to the
vector (sin® cosgp, sin® sing, cos®) (see figure 2). The statg, j), pointing towards the
‘north pole’ of the sphere, enjoys the minimal uncertainty, i.e. the expregi,gr;,y,z AJ?
takes in this state the minimal valye(the other possible choice of the reference state is
lj, —j)). More precisely, we put

/.0, ¢) =v2j + 1R(@D, @)|], j). B.1)

Using the stereographical projection = tan(®/2) expip) one can find a complex
representation of the coherent statey) := |7, 9, ¢)
V21
1, v) = 5 explvJ-1j. j)- (3.2)
A+ 1y1?)/
The prefactor,/2j + 1 introduced into the above formulae ensures the coherent states
identity resolution in the form

where the Riemannian measyteon S? is given by gi = siny d dp/47 and therefore
does not depend on the quantum number The norm of the coherent states changes
with j as|(j, 9, ¢|j, ¥, ¢)| = 2j + 1, which enables the respectitfusimi-like distribution
525 (,¢) — |{j, 0 0lj, 0, ¢)? € R of the coherent statgj, 9, ¢) to tend to the
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Y

Figure 2. Spherical representation of the spin coherent stéte) generated by the unitary
rotation operatorR (9, ¢).

Dirac é-function asj — oo. Thus, after such a renormalization we can treat the limit

j — oo as thesemiclassical limit[54] or, in other words, as thsharp-point limitin the
sense of Schroeck [61]. For an interpretation of this limit in the language of nonstandard
analysis see [62]. If we had transformed spin coherent states in a different way defining
117, v/2jv) = (L+]y1?)~/ exply J_1|j, j), we would have obtained the canonical (harmonic
oscillator) coherent states in the limit— oo. This kind of limit, however, is completely
different from the semiclassical limit we use in the present paper.

To simplify the notation in the following sections we shall omit the numpéabelling
coherent statefy, ) or |y). Note thatS? is isomorphic to the coset spaé@/(2)/U (1),
whereU (1) is the maximal stability subgroup ofU (2) with respect to the statg, j), i.e.
the subgroup of all elements ¢fU (2) which leave|j, j) invariant up to a phase factor.
Hence the above construction can be treated as a particular case of the general construction
of group-theoretic coherent states.

Expansion of a coherent state in the eigenbasig’oéind J, reads

. = A —m v j+m v v 2J vz .
9, 0) =+/2j+1 Z'Sln’ <2) cos (2> expi(j —m)p) |:(] m):| |j, m).

m=-—j
(3.4)

The expectation values of the components/ddire
(J, 0, 0l 1j, 9, @) = j(2j + 1)(sin® cosy, Sind sing, cosy) (3.5)

which establishes the link between the coherent $fat& ¢) and the vector, ¢) oriented
along the direction defined by a point on the sphere.

The infinite basis formed in the Hilbert space by the coherent states is overcomplete.
Two different SU (2) coherent states overlap unless they point towards two opposite poles
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on the sphere. Expanding two coherent states in the) basis (3.4) we can calculate their
overlap as

1+ cosg\¥
+> (3.6)

2

where E is the angle between two vectors 6 related to the coherent statgk ¢) and
|9, ¢’). Hence the transition kern& defined by (2.9) takes (fo/ = I) the form

(9, ¢'19, ) 1> = (2] + 1>2(

s 10, 0)
K (9, @), (¥, =
(0, 0), (@, ¢)) 2 +1
2j+1 . . ;
_ St [1 + cosy cosy’ + sinv siny’ cogy — ¢)]. (3.7)

22j
The overlap decreases to 0 withfor |9, ¢) # |¢, ¢’) and sufficiently largej.

4. Measurement entropy for two hemispheres

We would like to compute the CS-measurement entropy for the case corresponding to the
physical process of simultaneous approximate measurement of different spin components.
Let us first consider the simplest case, where the classical phasemapel to the two—
dimensional spheré? is divided into two hemisphereB, = {(¢, ¢) : ¢ € [0,27), 0 €
[0,7/2]} and E_ = {(¥,¢) : ¢ € [0, 2r1),9 € (w/2, w]}. The result of any measurement

i = £1 gives information about the orientation of the spin.

4.1. Transition probabilities

The CS-transition probabilitiesP®S for the resultsig,...,i,_1 of n consecutive
measurements are obtained from (2.8) and (2.9) by setting the evolution opErator
be the identity and taking the appropriate integration domains. The explicit integral reads

EiO

n—1

.. \/E Sinﬂn—l dﬂn—l d(pn—l 1_[ K((ﬁu—lv %—1)7 (ﬁu’ ‘pu)) (41)
in—1 u=1

where the kernekK is given by (3.7), and, = £1 foru =0, ...,n — 1. Straightforward

integration allows one to obtain analytical results for low values ahd j [48].

In spite of the trivial dynamicsl{ = I) the result of the first measurement may differ
from the second one, and consequently, all the transition probabilities are nonzero. In the
semiclassical limitj — oo the ‘mixed’ transition probabilities (e.gP<> = PC%) vanish,
while the survival probabilities (e.gPC?, PS3,) tend to 3. The geometric symmetry of
reflection induces the invariance of the probabilities with respect to the interchange of signs
(+ <— —). Moreover, due to the time-reversal invariance, the CS-probability for any
sequence of results equals the CS-probability of the same sequence written in the reverse
order (e.g.PS?_, = PS5, ). One can observe that for a given number of measurements
n, the probabilities for two sequences of results with the same number of transitions are
similar (e.g. for one transitionPSS__ ~ PCS__; for two transitions: PSS_, ~ PS3_.).

Direct integration of (4.1) does not allow one to obtain the CS-probabilities for larger values
of j or n, which is necessary to estimate the CS-measurement entropy. For this purpose it
is convenient to formulate integrals in matrix form.
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4.2. Matrix formulation of integrals

Computation of the CS-probabilities can be significantly simplified by applying the general
method described in section 2.5. This can be seen, especially, for the division of the sphere
into several latitudinal components,, ..., E;, whereE; = {(¢, ¢) : ¢ € [0, 27), ¢ € W;}

fori =1,...,k, and{Wy, ..., W,} is a partition of the interval [Qr]. Performing the

substitutionss; = cos®; and integrating overy, ..., ¢, we can simplify formula (4.1)
writing
n—1 5
Pi?,?..i,,,l = /~ %dto s /: %dtn—l 1_[ K(ty—1, tu) (42)
Wio Wi,,,l u=1
whereW; = {cost :t € W;} fori =1, ..., k, and the reduced kerndl is given by

. .\ 2 2j
R, =211 > (qu) (@A+DA+)N)(A-DL =)™ =Y apt's”  (43)

1,r=0

for r,s € [—1,1]. Thus the kerneK is represented in the form (2.18) wita = [—1, 1],
dii(t) = 3dt, fi(t) =, g (s) = s" for 1,5 € Q, and M = 2j. Note that{Wy, ..., Wi}
forms a partition of2. Hence we can apply formula (2.19) for the CS-probabilities writing
them in the matrix form

PES . =((1,0,...,0)(B(ixn-1)AB(ix-2)A ... AB(i0))|(1,0, ..., 0)) (4.4)
with A = [a,]7_, (given by (4.3)) andB(i), = [ " de for i = 1.k
I,r=0,...,2j.
If we divide the sphere into two hemispheres, tiBi),; = i'*" /2(14+r+1) for i = +1;
I,r=0,...,2j. Inthis case (4.4) takes a particularly simple form joe %
1 1 iy/2 1 iy/2 1 in_1/2

PSS . = (10| . 0 )( ! )( n1 1,0 4.5

v s = o (1O <lo/2 )2 a2 10 )I@O) (45)
where the results of the measurementare equal to-1 or +1 foru =0,...,n — 1.

4.3. Limitn — oo

In the remainder of this section we assume tfids the partition of the sphere into two
hemispheres, i.&C = {E., E_}. Moreover, we Seflneas:= HmeadC), H, := H,(C) and
G, :=G,(O).

In table 1 we present partial and relative entropies calculated for two different values
of j with the aid of the formulae (2.10), (2.11) and (4.4).

We assert in section 2.4 (4) thal, converges tdHneasexactly as 1n. One can deduce
from table 1 that the convergence 6f, to the same limit is much faster. In fact, it
seems to be exponential. In section 6 we give some arguments supporting this statement.
Thus, to calculate the limiting value we use the extrapolatiB)s~ Hmneas+ «/n and
G, ~ Hpmeast+ yc". The outcomes are contained in table 1. Let us observe that the rate
of convergence decreases wittand hence the method of computing the CS-measurement
entropy based on formula (4.4) does not lead to satisfactory results in the semiclassical
limit, i.e. for large quantum numbet.
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Table 1. Partial entropyH,/n and relative entropyG, for the partitionC = {E., E_}, the

quantum numbey = % and j = 10, and the number of measurements- 1, ..., 8 with an
extrapolation toz — oo.

i=3 j=10
n H,/n G, Hy,/n Gy
1 0.693147180559 0.693147 180559 0.6931471 0.6931471
2 0.677355209358 0.661563238157 0.5323993 0.3716514
3 0.672009066259 0.661316 780060 0.4734456  0.3555383
4 0.669335388698 0.661314356017 0.4429253  0.3513642
5 0.667731177545 0.661314332934 0.4243127 0.3498623
6 0.666 661703407 0.661314332713 0.4118012 0.3492438
7 0.665897793307 0.661314332711 0.4028258 0.3489737
8 0.665324860733 0.661314332711 0.3960793  0.3488532
oo 0.6613 0.661314332711 0.3488 0.348 7560

4.4. Semiclassical regimg> 1

The matrix formula for the CS-probabilities is useful in numerical calculations, but as was
mentioned above, does not allow us to compute the entropy for very large valyed-of
two measurements, however, one can obtain some exact results. Applying (4.2) and (4.3)
we get an analytical formula for the CS-probability valid for any
PSS = (4j " 1)24f2.
2j
(For the proof see appendix C.)

Due to symmetryPS$ = PSS and PSS = PCS = I — PCS. It is convenient to
introduce aj-dependent coefficien = PSS/ PE3, which tends to zero in the semiclassical
limit j — oo. Using formula (4.6) we obtain

4j+1

S
I T ogj41 (AL
24j+1 _ ( sz )

(4.6)

PCS —

4.7)

In order to get an upper bound for the CS-measurement entropy we may compute the
relative entropyG, = H, — H; (see section 2.4). The partial entropy after one measurement
H; equals In2, independently gf Summing over four possible pathst, +—, —+, ——
one can compute the partial entropl obtaining finally the formula

T
Ga=In(z; +1) — tf~j|—1
which is symmetric with respect to an involutian— 1/7;.

Inserting the expression (4.7) into the above formula we get an explicit approximation
for Hmeas It is represented by a full curve in figure 3, while circles denote the results
obtained numerically for smalf with the help of the matrix method presented above.
In the semiclassical rangg > 1 it is legitimate to apply the Stirling approximation of
the factorial in (4.7), which gives a fair approximation and an upper bound for the CS-
measurement entropy

In(z)) (4.8)

Inj

22nj"

Hpeas< G2 ~ (4.9)
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Figure 3. CS-measurement entropymeas for two hemispheres as a function of the quantum
number ;. Circles represent numerical results, while the full curve stands for an upper bound
G2 given by (4.8).

It is worth noting that formula (4.8) can be obtained from the Markovian approximation
of the CS-probabilities. Let us assume for a moment that the probablﬂﬁés were
generated by a Markov shift. It follows from the symmetry of the problem fhat its initial
vector would be(z, 2) and its transition matrixQ would have the form

— 1
Q:(la 1aa> wherea = 2PS3 =

. 4.10
—a 7 +1 ( )

In fact, our probabilities’SS ;  are not generated by a Markov shift; nevertheless, one
can consider the Markovian approximation as above. Then the approximate probabilities
PMar depending only on the numbér of ‘transitions’ from one hemisphere to the other
(L=3(n—1—Y""1i,i,—1)) are equal to
L
M 1 1-

Pio.?.r,i,,_l = QQio,il X X Qill—Z,[n—l = 2(1_ a)L b = 2(‘[ —ifl)" 1° (411)
In this approximation the probabilities form a geometric series with the same att
any number of measurements

Summing over all 2 possible sequences we obtain the following approximate formula

for the partial entropy:

n— L L
gMar _ _ 2 1: n—-1 Y In i
" L ('L'j + 1)”71 2(1']' + 1)”71

L=0

— N2+ —1) [ln(zj F1— %’1 |n(z,.)} : (4.12)
J

Now dividing both sides by: and performing the limitz — oo we arrive at the relative
entropyG» given by (4.8).

Let us recall that in the semiclassical lingit — oco) the relative measurement entropy
G» tends to zero as Jiy,/j. This defines the scale in which the quantum effects are
revealed. Unfortunately the precision of this approximation is not sufficient to conclude
whether or not the logarithmic prefactor describes correctly the decay of the measurement
entropy Hmeas in the semiclassical limit, or whether its existence is an artifact introduced

by the approximation.
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Figure 4. Partition of the sphere divided along a parak®! into two connected
cells.

0.8 -
H,/n | In(2)

Figure 5. Partial entropyH,/n for the partition presented in figure 4 as a function of the
parameter co®. (n = 8). The values ofj are given in the figure.

5. CS-measurement entropy for various partitions

The CS-measurement entropy depends on the number of cells in a partition and on their
shape. In this section we consider several partitions of a different type. Figures 4 and 7
contain schemes for these partitions. In all the cases we compute the entropy using the
matrix formulation introduced in sections 2.5 and 4.2. As in the preceding section we
assume that denotes the respective partition of the sphere, putfifigas := HmeadC),

H, = H,(), andG, := G,(C).

5.1. Two connected cells

Let us split the sphere into two segments along a paréllel The northern segmerit .,
contains points withy € [0, ®.], while the southernE_ those with® € (©., 7]. This
partition is shown schematically in figure 4.

Figure 5 represents the dependence of the partial entfypy on the variable co®,
for n = 8 measurements and several valuesj ofFor each value of and j the partial
entropy achieves its maximum at @®s = 0, for the partition into two hemispheres. The
solid horizontal line drawn at In 2 represents the maximal entropy admissible for the partition
containing two cells. For increasing values jothe partial entropy decreases and tends to



3188 J Kwapiei et al
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cos(@)l'0

Figure 6. Partial entropiesH, /n and measurement entrof¥meas = lim, .o H,/n for the
partition presented in figure 4 with= % (light curves), andj = 5 (heavy curves).

Figure 7. Partition of the sphere int@} two cells plotted out

by parallels®, andzr — ©,: a spherical zone and the union

of two spherical segmentsh) two disconnected cells created
by the equator and the spherical wedge of the radian measure
Dy

zero forj — oo.

For any of these partitions the partial entrafly/n approaches the limiting valuBeas
approximately as An (see section 2.4 (4)). As in the previously discussed case of two
hemispheres, we estimate the limiting valbgeas by computing the relative entrop§,,.
Figure 6 shows a comparison of the partial entrogigsn with HpeaseXtrapolated in this
way for j = % and j = 5. The difference increases with the spin length

5.2. Two disconnected cells

Let us now analyse another two classes of partitions of the sphere into two cells. In the
first case (figure &)) we divide the sphere into three parts along paralels®, and®,,
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Figure 8. CS-measurement entrog¥meas as a function of the number of celisfor j = %
(circles). The full curve represents the functionkln The inset shows the dependence of
Hmax := INk — Hmeason k—2 obtained fork = 30, ..., 1000.

and then join the lower and upper parts, thus obtaining two cells: a connected spherical
zone and the disconnected union of two spherical segments. The CS-measurement entropy
changes in this case from 0 (fa, = 0) to In2 (for ®, = 7/3), which is the largest
possible value for the CS-measurement entropy with respect to a two-element partition.

In the second case (figurebjj we start from the splitting of the sphere into the lower
and upper hemispheres. Next, we cut symmetrically two ‘pieces of cake’ out of both
hemispheres, and then join the four parts across. We get in this way two disconnected cells
marked in black and white in figure 0, The CS-measurement entropy changes from In 2
(for &, = 7) to 0.6613... (for ®, = 0). The latter case relates to the partition of the
sphere into two hemispheres studied in section 4.

5.3. Many cells

Let us considek disjoint zones created on the sphereky 1 parallels. As in the case
of two cells, represented in figure 4, the CS-measurement entropy seems to achieve its
maximum if the cells have the same volumel/k. We computed the CS-measurement
entropy HmeadCy) for the partitionsC, of the sphere intd = 2, ..., 1000 zones of the same
volume. Note that for largé even the second relative entro@s(C;) provides a reliable
estimate forHmeadCr). In figure 8 we present the CS-measurement entropy displayed for
j= % as a function of the number of celtg(circles). The full curve represents the function
Ink, which gives the upper bound for the entropy with respect to a partition consisting of
k cells.

Since for any partitiorC and a quantum map’ the CS-dynamical entropy is defined
by (2.14) as the difference off (U,C) and HmeadC), it is convenient to consider the
quantity Hmax(Cx) := Ink — HmeadCr), limiting the partition-dependent dynamical entropy
Hgyn(U, C) from above. From (2.17) and (3.7) we know thd§a(Cy) < In(2j +1) as
Hi(Cy) = Ink. Although using this method one can establish the finiteness of the partition-
independent dynamical entrop¥un(U) given by (2.15), this upper bound seems to be
rather crude. In facHo(Cy) decreases withi. It is interesting to observe that this quantity
converges fok — oo. The limiting value depends onand is close to @6 for j = % The
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inset in figure 8 shows the dependenceHfa(Cy) on k=2 for k = 30, ...,1000; j = %

The data displayed in this way are fitted well by a straight line, which allows us to postulate
an approximate relatioflmead Cr) ~ Ink — 0.059 997 45+ 0.1637/ k2, found for j = %
6. CS-entropy and iterated function systems

In this section we establish a relationship between CS-entropy and iterated function systems
(IFSs). Firstly, we show how to obtain an IFS from a bistochastic kernel and a partition of
the phase space. Then, we use this system to get an integral formula for CS-entropy and
propose a new method of computing CS-entropy based on the ergodic theorem for IFSs.
For more information on IFSs see [64—66].

6.1. lterated function systems and an integral formula for CS-entropy

We follow the notation of sections 2.4 and 2.5. With each &lli = 1, ..., k) of the
partition we associate afM + 1) x (M + 1) matrix D(i) = B(i)A. We consider functions
pi : R® — R* and partial maps7; : R — R given by

pi(A) =(1,0,...,0(D@)(1, 1)) (6.1)
and
Fi(x) = (DG)(, 1))/ pi(V) (6.2)
forneRM,i=,1... k.
Let us suppose that the functiogs = 1, g1, ..., g» are linearly independent. Then

one can show that
treated as place-dependent probabilities.
Moreover, we shall assume that there exists aXset R” such that
(a) X is a compact set witho := ([, g1...., [y gm) € X,
and for everyi =1, ..., k:
(b) Fi(X) C X,
(©) pilx > 0,
(d) F;|x is a Lipschitz function with the Lipschitz constant < 1.
Then the following assertions hold:
(1) F = (Fi, p)*_; is aniterated function systeron X.
(2) The IFSF generates the following operatdt acting onM (X) (the space of all
probability measures oK):

k
(Vv)(B) = / i(A) dv(d) (6.3)
’ ; F,-*1<B>p '

forv e M(X) and B € B(X), whereB(X) denotes the family of all Borel sets an. This
operator describes thevolution of probability measuresnder the action ofF. We shall
denote by(Z)),en the associated Markov stochastic process having the initial distribution
V.

(3) There is a uniquavariant probability measurg: for the IFS defined above fulfilling
the equationV i = . This measure is attractive, i.€"v converges weakly tee for every
v e M(X)asn — oo.

(4) The relative entropie§&,, are given by

G, = / (1), .. O A(V"8,) (1) forn e N (6.4)
X
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where h; is the Shannon-Boltzmann entropy function given by(pi,...,pr) =
— >, piInp; for any p; > 0 such thaty_, p; = 1.
(5) The CS-entropyHmeasiS given by anintegral formula

Hineas= /X B (10, <, pe() A (). (6.5)

Let us sketch briefly the proof of the above statements. Assertion (1) follows from (0)
and assumption (b). The Markov processes generated by IFSs were analysed in [64] and
[67]. Assertion (3) can be deduced from assumptions (c) and (d), and [65, theorem 2.1].
Formulae (6.4) and (6.5) were proved by Faneesl in [56] for algebraic measures, i.e.
under the assumption that the formula for probabilities analogous to (2.19) holds. They
followed an earlier result of Blackwell [68] on the entropy of functions of a finite-state
Markov chain. In both these papers, however, the authors did not refer to the theory of
IFSs and assumed that the matrideg) are positive. In spite of this, their proof can also
be applied in our case. For more details we refer the reader to [55].

6.2. Ergodic theorem and random algorithm for computing CS-entropy

The key point in our reasoning is to find a setfulfilling conditions (a)—(d) above. In all

the cases we analysed this task was not too difficult to accomplish. We shall give some
examples below. Utilizing the results presented in [64] and [69] we can go even further and
prove (under some additional assumptions) thatends toHneasexponentially. Moreover,
applying theKaijser—Elton ergodic theorem for IFSgsee [70] and [71]) we obtain the
following formula:

n—1
Hmeas= lim =% " h(z}) almost everywhere (6.6)
n—0o n 1—¢

whereh = hi(p1, ..., pr) andv is an arbitrary initial distribution.

This formula gives another numerical method of computing CS-entropy. To obtain the
value Hpegsit suffices to calculate Ceasaro means of the fundti@atong a trajectory of the
stochastic proces&Z;)en. This is a particular case of the general method which appeared
under the name of random iterated algorithm in [66]. The convergence in (6.6) seems to be
rather slow, namely ag'/2. Note, however, that here the time computational complexity
grows with & (the number of elements of the partition) linearly, whereas in the ‘matrix
method’ we considered in sections 2.5 and 4.2 it grows polynomially’(as Hence the
method based on formula (6.6) may be specially useful for large valukes of

6.3. Example

Now let us consider the partitiod; of the sphere into three zones of equal volume:
Ei={®¢):¢€]0,27),9 €[0,7/3]}, E2 = {(?, ¢) : ¢ €[0,27),8 € (/3,27 /3]},
andE; = {(9,¢) : ¢ €[0,27), 0 € (27 /3, n]}. Setj = % Then applying formula (4.3)
one can show that the matricég1), D(2), D(3) are given by

1 2 1 9 12

D(1) = (g 193) D(2) = <8 1) D(3) = (_32 13) (6.7)
9 8l 81 9 8l

Hence and from (6.1), (6.2) we obtain

pi) =1+ 2 p2() = 3 ps(A) =3 — 21 (6.8)
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Figure 9. The attracting invariant set for the IFS generated by the partition of the sphere
into three zones of equal volume foa)(; = % (b) j = 1. The values of the CS-
measurement entropy computed by the random iterated algorithna)afeas= 1.05306. . .,

(b) Hmeas= 0.992 20....

and

F1(.) = (184 130)/(27+ 18))
F(h) = A/27 (6.9)
F3(1) = (—18+ 131)/(27 — 18%).

The setX = [—1, 1] fulfils conditions (a)—(d) with the contraction rates for the mapsF>,
and F3 equal tocy = 3, c2 = 55, andcs = 3, respectively. The support of the attracting
invariant measurg. presented in figure @j is a Cantor-like fractal set.
Now let us consider the cage= 1 (with the same partitiods). Applying formulae
(4.3), (6.1), and (6.2), we can compute the mansp,, ps, and Fy, F», F3, as before.
Now, the setX = {(r1, A2) : A1 € [—1, 1], 11? < A2 < 1} satisfies conditions (a)—(d). The
attractive invariant set for this IFS is presented in figure)9(Also in this case it has a
fractal structure. The view of the middle part of the IFS through a magnifying glass is
shown in figure 9§) to underline its self-similar structure. In the figure caption we give
the values of the CS-measurement entropy obtained with the aid of the random algorithm.
We have also applied this technique to compute numerically the CS-measurement
entropy for other partitions of the phase space andanging from% to 10. For the
partition of the sphere into two hemispheres the results obtained in this way coincide with
those received from the extrapolation of the relative entrogigsnd collected in table 1.

7. Rényi CS-measurement entropy

In this section we consider quantities which are natural generalizations of CS-measurement
entropy introduced in section 2.3. We assume tha a partition of the phase space and
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the CS-probabilities are given by (2.8). We shall wrig for H,(C), G, for G,(C), and
Hmeasfor HneadC). Moreover, we choose the parameger 0 such thatg # 1.

There are at least two different ways of introducing é&nR-type version of CS-
measurement entropy. Firstly, we can def@®-measurement entropy of ordgras

Hvead ) := M SUp ™ H, () (7.1)
where
1 k
H,(B) := In[ Y. (RS )ﬂ] (7.2)
1— ,3 w5 0so0sln—1

On the other hand, using the notion oé¥i conditional entropy of ordeg [63] we
can define the quantity

Gmeas(,B) = lim SUpG,,(ﬂ) (7-3)
where
Hi(B) forn=1
. k
Gn(IB) — 1 1 ﬂ In |: Z (Pi(()i?”in1)ﬂ(PigE“in2)1_ﬁi| for n> l (74)
- i0seemsin_1=1

The quantities5, (8) are the analogues of the relative entropies considered in section 2.
Note thatH,(8) — H,(8 — 1) andG,(8) — G,(B —> 1). This justifies the notation
H,(1) := H,, G,(1) := G,, and Hpeadl) = Gmeadl) := Hmeas In contrast to the case
B =1, the quantitiedHmnead 8) and Gmead 8) Need not be equal in general (see figure 11).

The numberG,(B) (8 # 1) can be computed from the following integral formula
analogous with (6.5):

k
GmeadB) = Yo f > (pi(x))P du(x) (7.5)
- B X i=1

where(X, (F,«)f.‘zl, (pi)f.‘:l) is the iterated function system defined in section 6 arid the
attractive invariant measure for this system [55].

Now let us consider the case of the division of the sphere into two hemispheres. As in
section 4.4 we can use the Markovian approximatitiig) to evaluate the limiting value
Gmead B) for large values ofj. Similar reasoning leads to the formula

1 1+1f
Ga(B) = [ i } (7.6)

1-pM 1+ 1)

whereg # 1 andr; is given by formula (4.7).

The functionG, defined by (4.8) and (7.6) is continuous. Moreover, we can compute
the limitsG2(8) — In2 (B — 0) andG2(B) — In(1+1;)(B —> o0). Asymptotically
(for large j) we obtain

71 71 for 1
1= @uj)i"? p=
Inj
Ga(B) ~ Z(T]])j'/z for =1 (7.7)
p 1 for g > 1.

B —1(2rj)t/?
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Figure 10. Markovian approximatiorG, of the Renyi CS-measurement entropy as a function
of the parametep for the partition of the sphere into two hemispheres and selected values of
the quantum numbey labelling the curves.
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Figure 11. Two versions of the Bnyi CS-measurement entrop¥meas Gmeas and the
Markovian approximatiorG, as a function of the rescaled paramegee= 4 arctarig)/n for
j=121andj =5, in the case of the partition of the sphere into two hemispheres.

In figures 10 and 11 we treat the case of the partition of the sphere into two hemispheres.
In figure 10 we present the Markovian approximatioh for different values of the
semiclassical parametgr We see that all the curves start from the value In2 (topological
entropy) and then decrease when the value of the paramegeows. Moreover, we can
observe thatG, decreases whep increases and converges to 0 (which is the value of the
classical Rnyi entropy in this case) if tends taco. In figure 11 we compare two versions of
the Renyi CS-measurement entropinead ¢), Gmead¢), and the Markovian approximation
G(¢) for two different values of the parametgr The variable; = 4 arctargg) /7 changes
from 0 to 2, wheng varies from 0 tooco. The quality of the Markovian approximatiafi,
becomes worse for large values gfand j, still, it gives an upper bound for theé&Ryi
CS-entropyG meas
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8. Conclusions

This work has been devoted to the study of the notion of CS-measurement entropy. We
have collected the basic theoretical material in sections 2.4 and 2.5, analysed numerical
algorithms for computing CS-measurement entropy in sections 4.2 and 6, examined several
examples in sections 4 and 5, and proposed two generalizations of the notion in section 7.
The methods developed here can be used to investigate of the CS-measurement entropy for
a broad class of partitions of the phase space and values of the semiclassical pajameter
The semiclassical limit (largg) has, as usual, been most difficult to treat. Nevertheless,
even in this case, we have obtained several approximate results in section 4.4. We have
restricted our attention to the spifi{(2)) coherent states defined on the sph&fe We
believe, however, that our approach can be extended to other phase spaces and to other
families of coherent states.

The fact that the measurement entrofiieas Can be calculated as the limit of the
relative entropiesG, has played a crucial role in our analysis. As we have argued, the
approach to the limit is exponential in this case. The rate of convergence seems to be
strictly connected with the limiting value of the sequence: the larger the entigpy the
faster the convergence. A similar dependence was reported for the KS-entropy of piecewise
analytic one-dimensional maps by&falusy and Gyrgyi [36]. They estimated the decay
of the relative entropies, as~ e 27" where H(3) is the Renyi entropy of order 3.

The convergence we have observed for CS-entropies is much faster.

In [13] we formulated a general programme for analygjogntum chao# terms of CS-
entropy. Here, we have studied CS-measurement entropy only, that is, the CS-entropy of the
identity operator, which measures the randomness coming from the process of approximate
sequential quantum measurement. Still, our main purpose is to €&f8ejynamical entropy
which is connected only with the unitary dynamics of the quantum system and is defined
as the difference of two quantities: the CS-entropy of the given unitary operator and the
CS-measurement entropy (see formula (2.14)). The precise analysis of the notion of CS-
measurement entropy is the first essential stage in performing this task. We expect that
the methods elaborated here can also be used in the investigation of the CS-entropy for an
arbitrary unitary mapl/, and so, in studying CS-dynamical entropy. The main difficulty
in extending our approach to the general case is that we have to deal with much larger
matrices; nevertheless, the numerical algorithms can be managed in much the same way. In
a forthcoming publication we shall try to calculate the CS-dynamical entropy for quantized
regular and chaotic maps.

In this work we have presented an effective method of computing the dynamical entropy
of a system vidterated function systemsAlthough this technique has been applied here
only in calculations of the CS-measurement entropy, we believe that it may be useful for
computing the CS-dynamical entropy of quantum systems, as well as the Kolmogorov—Sinai
entropy of classical systems.
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Appendix A. Bounds for CS-measurement entropy

Proof of the inequalities (2.16)

We assume that denotes a finite partition of the phase space and wéipiis:= HmeadC),
H, := H,(C), andG, := G,(C).

It follows from the general theory of dynamical entropy [50,51] that the sequence
{H,},en IS subadditive, i.e.

H,., < H,+ H forn,l € N. (Al)

Let nown,l € N, ig,...,iy-1=1,...,k. Then from (2.8) we deduce

n—1
PIE?-JH/—l = / de ce / dxnfll_[K(xuflv -xu) / dxn K(xnfl’ xn)
Eig E; u=1 Ei,

n—1

n+l—1
X / dxn+l v / d)Cn+[7]_ 1—[ K(Xu,]_, xu)
E; E

inyl ingi—1 u=n+1

< PCS . KoPCS

10,eesin—1 Ipyeeosingi-1"

(A2)

Taking the logarithms of both sides of (A2), multiplying them byYcS . | and summin
g g py g y)l[) ..... Ip4l—1 g
overig,...,ip—1=1,...,k we get

H,., > H,—InKog+ H forn,l e N. (A3)
Combining (Al) with (A3) and dividing the expressions hywe have

1 1 1 1

7Hn_7|nK0< 7(Hl+n_Hl) g 7Hn (A4)

n n n n
and so

1 1 1& 1

71_111_*|nK0<*ZG1+i ngn' (AS)

n n n n

i=1
Letting! — oo we obtain the desired conclusion.
Appendix B. Convergence rate of partial entropies

Proof of property 2.4 (4)

We follow the notation of appendix A. From 2.4 (1) we get

1 1< 1 n—1
*Hn - *Z Gi > *Hl‘i‘ Hmeas (Bl)
n n i1 n n

Hence
1 H, — H,
—H, — Hmeas> T Tmeas > 0. (BZ)
n n

On the other hand (2.16) implies
1 In K
~H, — Hieas< ——. (B3)
n n

Combining (B1) and (B2) we get the required result.
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Appendix C. Formula for the second-order CS-probabilities

Proof of formula (4.6).

Set 2/ = M. Then, from (4.2) and (4.3) we have

Tdr (Ods -
PCS:/— —K(,
o 2J42 “:5)

M+ 1M /N2 L 0
= T++1 ( ) / dr (1+t)"(1—t)M_‘7/ ds (14 $)4(L— s)M4
4 ¢=0 q 0 -1
1 < M pM
=——— % RYR C1
(1‘4_1_1)4M+1q;0 q “M—q ( )
where
M 1
R) = (M—i—l)( )/ dr (L+ )P A —n)M-7. (C2)
P/ Jo
Now we need the following two lemmas, which we shall prove later.
Lemma 1.
Po/M+1
M
Ry = 2;( s ) (C3)
and
Lemma 2.
L 2M
D RYRY =@M +1) v ) (C4)
q=0
Combining (C1) and (C4) we get
1 M 2M +1\ 1
PSS=__ = ___2M+1 = o C5
- (M+l)4M+1( * )<M) < M )4M+1 (C5)

which establishes the formula.

Proof of lemma 1We proceed by induction. ClearlR)! = 1. Assuming (C3) to hold for
p, we shall prove it forp + 1. We have

M 1

RM | = M+1< )/ dr (14 0)Pt @ —nM-r-t, C6
1 = ( ) p+1) )y ( ) ) (C6)

Integrating by parts we obtain

M+1/ M M+D(p+D( M /1 .

RM T dr (1 P(1— P, c7
ri M—p<p+1>+ M—p <p+1> o TR D

By the induction assumption

M+1

M M

ra=(010) (8)

which completes the proof.
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Proof of lemma 2 Applying lemma 1 we deduce that

M MM\ (M+1
;R};’R%,Q= Z( ) >< z )((M+1)—(s+l))

s,1=0;
sH<M
M+1 r
=ZZ(M+1><M+1)((M+1)—V). (C9)
=0 s=0 S F=s

Using the well known combinatorial identities

; (I;) (r is) B <2rL ) (C10)
; (2rL ) - % <4L * (ZLL>> (C11)

L 2L L

we conclude that

ud L 2M +2
ZR;”R%_,{:Z( r+ )((M—l—l)—r)
q=0

r=0
M+1/2M +2 2M
Mt <M+l):(2M+l)(M) (C13)

which proves the lemma.
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